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Bohmian mechanics is arguably the most naively obvious embedding imaginable
of Schrödinger’s equation into a completely coherent physical theory. It describes
a world in which particles move in a highly non-Newtonian sort of way, one which
may at first appear to have little to do with the spectrum of predictions of quantum
mechanics. It turns out, however, that as a consequence of the defining dynamical
equations of Bohmian mechanics, when a system has wave function k its configu-
ration is typically random, with probability density r given by |k|2, the quantum
equilibrium distribution. It also turns out that the entire quantum formalism,
operators as observables and all the rest, naturally emerges in Bohmian mechanics
from the analysis of ‘‘measurements.’’ This analysis reveals the status of operators
as observables in the description of quantum phenomena, and facilitates a clear
view of the range of applicability of the usual quantum mechanical formulas.

KEY WORDS: Quantum equilibrium; Bohmian experiment; quantum observ-
ables; formal measurements; POVM; genuine measurement; hidden variables;
Bohm’s causal interpretation of quantum theory; pilot wave; foundations of
quantum mechanics.



1. INTRODUCTION

It is often argued that the quantum mechanical association of observables
with self-adjoint operators is a straightforward generalization of the notion
of classical observable, and that quantum theory should be no more
conceptually problematic than classical physics once this is appreciated. The
classical physical observables—for a system of particles, their positions
q=(qk), their momenta p=(pk), and the functions thereof, i.e., functions
on phase space—form a commutative algebra. It is generally taken to be
the essence of quantization, the procedure which converts a classical theory
to a quantum one, that q, p, and hence all functions f(q, p) thereof are
replaced by appropriate operators, on a Hilbert space (of possible wave
functions) associated with the system under consideration. Thus quantiza-
tion leads to a noncommutative operator algebra of ‘‘observables,’’ the
standard examples of which are provided by matrices and linear operators.
Thus it seems perfectly natural that classical observables are functions on
phase space and quantum observables are self-adjoint operators.

However, there is much less here than meets the eye. What should be
meant by ‘‘measuring’’ a quantum observable, a self-adjoint operator? We
think it is clear that this must be specified—without such specification it
can have no meaning whatsoever. Thus we should be careful here and use
safer terminology by saying that in quantum theory observables are asso-
ciated with self-adjoint operators, since it is difficult to see what could be
meant by more than an association, by an identification of observables,
regarded as somehow having independent meaning relating to observation
or measurement (if not to intrinsic ‘‘properties’’), with such a mathematical
abstraction as a self-adjoint operator.

We are insisting on ‘‘association’’ rather than identification in
quantum theory, but not in classical theory, because there we begin with a
rather clear notion of observable (or property) which is well-captured by
the notion of a function on the phase space, the state space of complete
descriptions. If the state of the system were observed, the value of the
observable would of course be given by this function of the state (q, p), but
the observable might be observed by itself, yielding only a partial specifi-
cation of the state. In other words, measuring a classical observable means
determining to which level surface of the corresponding function the state
of the system, the phase point—which is at any time definite though pro-
bably unknown—belongs. In the quantum realm the analogous notion
could be that of function on Hilbert space, not self-adjoint operator. But
we don’t measure the wave function, so that functions on Hilbert space are
not physically measurable, and thus do not define ‘‘observables.’’
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The problematical character of the way in which measurement is
treated in orthodox quantum theory has been stressed by John Bell:

The concept of ‘‘measurement’’ becomes so fuzzy on reflection that it is quite
surprising to have it appearing in physical theory at the most fundamental level.
Less surprising perhaps is that mathematicians, who need only simple axioms
about otherwise undefined objects, have been able to write extensive works on
quantum measurement theory—which experimental physicists do not find it nec-
essary to read. ... Does not any analysis of measurement require concepts more
fundamental than measurement? And should not the fundamental theory be about
these more fundamental concepts? (8)

... in physics the only observations we must consider are position observations, if
only the positions of instrument pointers. It is a great merit of the de Broglie–
Bohm picture to force us to consider this fact. If you make axioms, rather than
definitions and theorems, about the ‘‘measurement’’ of anything else, then you
commit redundancy and risk inconsistency. (9)

The de Broglie–Bohm theory, Bohmian mechanics, is a physical theory
for which the concept of ‘‘measurement’’ does not appear at the most fun-
damental level—in the very formulation of the theory. It is a theory about
concepts more fundamental than ‘‘measurement,’’ in terms of which an
analysis of measurement can be performed. In a previous work (25) we have
shown how probabilities for positions of particles given by |k|2 emerge
naturally from an analysis of ‘‘equilibrium’’ for the deterministic dynamical
system defined by Bohmian mechanics, in much the same way that the
Maxwellian velocity distribution emerges from an analysis of classical
thermodynamic equilibrium. Our analysis entails that Born’s statistical rule
r=|k|2 should be regarded as a local manifestation of a global equilibrium
state of the universe, what we call quantum equilibrium, a concept analo-
gous to, but quite distinct from, thermodynamic equilibrium: a universe in
quantum equilibrium evolves so as to yield an appearance of randomness,
with empirical distributions in agreement with all the predictions of the
quantum formalism.

While in our earlier work we have proven, from the first principles of
Bohmian mechanics, the ‘‘quantum equilibrium hypothesis’’ that when a
system has wave function k, the distribution r of its configuration satisfies
r=|k|2, our goal here is to show that it follows from this hypothesis, not
merely that Bohmian mechanics makes the same predictions as does
orthodox quantum theory for the results of any experiment, but that the
quantum formalism of operators as observables emerges naturally and simply
as the very expression of the empirical import of Bohmian mechanics.
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More precisely, we shall show here that self-adjoint operators arise in
association with specific experiments: insofar as the statistics for the values
which result from the experiment are concerned, the notion of self-adjoint
operator compactly expresses and represents the relevant data. It is the
association ‘‘EW A’’ between an experiment E and an operator A—an
association that we shall establish in Section 2 and upon which we shall
elaborate in the other sections—that is the central notion of this paper.
According to this association the notion of operator-as-observable in no
way implies that anything is measured in the experiment, and certainly not
the operator itself. We shall nonetheless speak of such experiments as
measurements, since this terminology is unfortunately standard. When we
wish to emphasize that we really mean measurement—the ascertaining of
the value of a quantity—we shall often speak of genuine measurement.

Much of our analysis of the emergence and role of operators as
observables in Bohmian mechanics, including the von Neumann-type
picture of measurements at which we shall arrive, applies as well to ortho-
dox quantum theory. Indeed, the best way to understand the status of the
quantum formalism—and to better appreciate the minimality of Bohmian
mechanics—is Bohr’s way: What are called quantum observables obtain
meaning only through their association with specific experiments. We
believe that Bohr’s point has not been taken to heart by most physicists,
even those who regard themselves as advocates of the Copenhagen inter-
pretation.

Indeed, it would appear that the argument provided by our analysis
against taking operators too seriously as observables has even greater force
from an orthodox perspective: Given the initial wave function, at least in
Bohmian mechanics the outcome of the particular experiment is deter-
mined by the initial configuration of system and apparatus, while for
orthodox quantum theory there is nothing in the initial state which com-
pletely determines the outcome. Indeed, we find it rather surprising that
most proponents of standard quantum measurement theory, that is the
von Neumann analysis of measurement, (74) beginning with von Neumann,
nonetheless seem to retain an uncritical identification of operators with
properties. Of course, this is presumably because more urgent matters—the
measurement problem and the suggestion of inconsistency and incoherence
that it entails—soon force themselves upon one’s attention. Moreover such
difficulties perhaps make it difficult to maintain much confidence about
just what should be concluded from the ‘‘measurement’’ analysis, while in
Bohmian mechanics, for which no such difficulties arise, what should be
concluded is rather obvious.

Moreover, a great many significant real-world experiments are simply
not at all associated with operators in the usual way. Because of these and
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other difficulties, it has been proposed that we should go beyond operators-
as-observables, to generalized observables, described by mathematical objects
(positive-operator-valued measures, POVMs) even more abstract than
operators (see, e.g., the books of Davies, (21) Holevo, (50) and Kraus (55)). It
may seem that we would regard this development as a step in the wrong
direction, since it supplies us with a new, much larger class of abstract
mathematical entities about which to be naive realists. We shall, however,
show that these generalized observables for Bohmian mechanics form an
extremely natural class of objects to associate with experiments, and that
the emergence and role these observables is merely an expression of
quantum equilibrium together with the linearity of Schrödinger’s evolution.
It is therefore rather dubious that the occurrence of generalized obser-
vables—the simplest case of which are self-adjoint operators—can be
regarded as suggesting any deep truths about reality or about epistemology.

As a byproduct of our analysis of measurement we shall obtain a
criterion of measurability and use it to examine the genuine measurability
of some of the properties of a physical system. In this regard, it should be
stressed that measurability is theory-dependent: different theories, though
empirically equivalent, may differ on what should be regarded as genuinely
measurable within each theory. This important—though very often ignored
—point was made long ago by Einstein and has been repeatedly stressed by
Bell. It is best summarized by Einstein’s remark: (49) ‘‘It is the theory which
decides what we can observe.’’

We note in passing that measurability and reality are different issues.
Indeed, for Bohmian mechanics most of what is ‘‘measurable’’ (in a sense
that we will explain) is not real and most of what is real is not genuinely
measurable. ( The main exception, the position of a particle, which is both
real and genuinely measurable, is, however, constrained by absolute uncer-
tainty. (25))

In focusing here on the role of operators as observables, we don’t wish
to suggest that there are no other important roles played by operators
in quantum theory. In particular, in addition to the familiar role played
by operators as generators of symmetries and time-evolutions, we would
like to mention the rather different role played by the field operators of
quantum field theory: to link abstract Hilbert-space to space-time and
structures therein, facilitating the formulation of theories describing the
behavior of an indefinite number of particles. (29, 30)

Finally, we should mention what should be the most interesting sense
of measurement for a physicist, namely the determination of the coupling
constants and other parameters that define our physical theories. This has
little to do with operators as observables in quantum theory and shall not
be addressed here.
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Notations and Conventions

Q=(Q1,..., QN) denotes the actual configuration of a system of N
particle with positions Qk; q=(q1,..., qN) is its generic configuration.
Whenever we deal with a system-apparatus composite, x (X) will denote
the generic (actual) configuration of the system and y (Y) that of the
apparatus. Sometimes we shall refer to the system as the x-system and the
apparatus as the y-system. Since the apparatus should be understood as
including all systems relevant to the behavior of the system in which we are
interested, this notation and terminology is quite compatible with that of
Section 2.2, in which y refers to the environment of the x-system.

For a system in the state Y, rY will denote the quantum equilibrium
measure, rY(dq)=|Y(q)|2 dq. If Z=F(Q) then rZY denotes the measure
induced by F, i.e., rZY=rY p F

−1.

2. BOHMIAN EXPERIMENTS

According to Bohmian mechanics, the complete description or state of
an N-particle system is provided by its wave function Y(q, t), where
q=(q1,..., qN) ¥ R3N, and its configuration Q=(Q1,..., QN) ¥ R3N, where
the Qk are the positions of the particles. The wave function, which evolves
according to Schrödinger’s equation,

i(
“Y

“t
=HY, (2.1)

choreographs the motion of the particles: these evolve according to the
equation

dQk

dt
=
(

mk
Im
Yg NkY

YgY
(Q1,..., QN) (2.2)

where Nk=“/“qk. In Eq. (2.1), H is the usual nonrelativistic Schrödinger
Hamiltonian; for spinless particles it is of the form

H=− C
N

k=1

(
2

2mk
N2
k+V, (2.3)

containing as parameters the masses m1,..., mN of the particles as well as
the potential energy function V of the system. For an N-particle system of
nonrelativistic particles, Eqs. (2.1) and (2.2) form a complete specification
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of the theory (magnetic fields5 and spin,6 as well as Fermi and Bose–

5 When a magnetic field is present, the gradients Nk in Eqs. (2.1) and (2.2) must be understood
as the covariant derivatives involving the vector potential A.

6 See Section 2.5.

Einstein statistics,7 can easily be dealt with and in fact arise in a natural

7 For indistinguishable particles, a careful analysis (28) of the natural configuration space, which
is no longer R3N, leads to the consideration of wave functions on R3N that are either symme-
tric or antisymmetric under permutations.

manner (6, 15, 28, 42, 64)). There is no need, and indeed no room, for any further
axioms, describing either the behavior of other observables or the effects of
measurement.

2.1. Equivariance and Quantum Equilibrium

It is important to bear in mind that regardless of which observable one
chooses to measure, the result of the measurement can be assumed to be
given configurationally, say by some pointer orientation or by a pattern of
ink marks on a piece of paper. Then the fact that Bohmian mechanics
makes the same predictions as does orthodox quantum theory for the
results of any experiment—for example, a measurement of momentum
or of a spin component—provided we assume a random distribution for the
configuration of the system and apparatus at the beginning of the experiment
given by |Y(q)|2—is a more or less immediate consequence of (2.2). This is
because of the quantum continuity equation

“|Y|2

“t
+div JY=0,

which is a simple consequence of Schrödinger’s equation. Here JY=
(JY1 ,..., J

Y
N) with

JYk=
(

mk
Im(Yg NkY)

the quantum probability current. This equation becomes the classical conti-
nuity equation

“r

“t
+div rv=0 (2.4)

for the system of equations dQ/dt=v defined by (2.2)—governing the
evolution of the probability density r under the motion defined by the
guiding equation (2.2) for the particular choice r=|Y|2=YgY. In other
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words, if the probability density for the configuration satisfies r(q, t0)=
|Y(q, t0)|2 at some time t0, then the density to which this is carried by the
motion (2.2) at any time t is also given by r(q, t)=|Y(q, t)|2. This is an
extremely important property of any Bohmian system, as it expresses a
certain compatibility between the two equations of motion defining the
dynamics, which we call the equivariance8 of |Y|2.

8 Equivariance can be formulated in very general terms: consider the transformations
U: YQ UY and f: QQ f(Q), where U is a unitary transformation on L2(dq) and f is a
transformation on configuration space that may depend on Y. We say that the map YW mY
from wave functions to measures on configuration space is equivariant with respect to U and
f if m UY=mY p f−1. The above argument based on the continuity equation (2.4) shows that
YW |Y|2 dq is equivariant with respect to U — Ut=e−i

t
(
H, where H is the Schrödinger

Hamiltonian (2.3) and f — ft is the solution map of (2.2). In this regard, it is important to
observe that for a Hamiltonian H which is not of Schrödinger type we shouldn’t expect (2.2)
to be the appropriate velocity field, that is, a field which generates an evolution in configu-
ration space having |Y|2 as equivariant density. For example, for H=c (i

“

“q , where c is a
constant (for simplicity we are assuming configuration space to be one-dimensional), we
have that |Y|2 is equivariant provided the evolution of configurations is given by dQ/dt=c.
In other words, for Ut=ect

“

“q the map YW |Y|2 dq is equivariant if ft: QQ Q+ct.

The above assumption guaranteeing agreement between Bohmian
mechanics and quantum mechanics regarding the results of any experiment
is what we call the ‘‘quantum equilibrium hypothesis:’’

When a system has wave functionY its configuration Q
is random with probability distribution given by the
measure rY(dq)=|Y(q)|2 dq. (2.5)

When this condition is satisfied we shall say that the system is in quantum
equilibrium and we shall call rY the quantum equilibrium distribution.
While the meaning and justification of (2.5) is a delicate matter, which we
have discussed at length elsewhere, (25) it is important to recognize that,
merely as a consequence of (2.2) and (2.5), Bohmian mechanics is a coun-
terexample to all of the claims to the effect that a deterministic theory
cannot account for quantum randomness in the familiar statistical
mechanical way, as arising from averaging over ignorance: Bohmian
mechanics is clearly a deterministic theory, and, as we have just explained,
it does account for quantum randomness as arising from averaging over
ignorance given by |Y(q)|2.

2.2. Conditional and Effective Wave Functions

Which systems should be governed by Bohmian mechanics? An n-par-
ticle subsystem of an N-particle system (n < N) need not in general be
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governed by Bohmian mechanics, since no wave function for the subsystem
need exist. This will be so even with trivial interaction potential V, if the
wave function of the system does not properly factorize; for nontrivial V
the Schrödinger evolution would in any case quickly destroy such a factor-
ization. Therefore in a universe governed by Bohmian mechanics there is
a priori only one wave function, namely that of the universe, and there is
a priori only one system governed by Bohmian mechanics, namely the uni-
verse itself.

Consider then an N-particle non relativistic universe governed by
Bohmian mechanics, with (universal) wave function Y. Focus on a sub-
system with configuration variables x, i.e., on a splitting q=(x, y) where y
represents the configuration of the environment of the x-system. The actual
particle configurations at time t are accordingly denoted by Xt and Yt, i.e.,
Qt=(Xt, Yt). Note that Yt=Yt(x, y). How can one assign a wave func-
tion to the x-system? One obvious possibility—afforded by the existence
of the actual configuration—is given by what we call the conditional wave
function of the x-system

kt(x)=Yt(x, Yt). (2.6)

To get familiar with this notion consider a very simple one dimen-
sional universe made of two particles with Hamiltonian ((=1)

H=H(x)+H(y)+H(xy)=−
1
2
1 “2
“x2
+
“
2

“y2
2+1
2
(x−y)2

and initial wave function

Y0=k é F0 with k(x)=p−
1
4e−

x2

2 and F0(y)=p
− 1
4e−

y2

2 .

Then (2.1) and (2.2) are easily solved:

Yt(x, y)=p
− 1
2(1+it)−

1
2 e−

1
4 [(x−y)

2+(x+y)2

1+2it ],

Xt=a(t) X+b(t) Y and Yt=b(t) X+a(t) Y,

where a(t)=1
2 [(1+t

2)
1
2+1], b(t)=1

2 [(1+t
2)

1
2−1], and X and Y are the

initial positions of the two particles. Focus now on one of the two particles
(the x-system) and regard the other one as its environment (the y-system).
The conditional wave function of the x-system

kt(x)=p
− 1
2(1+it)−

1
2 e−

1
4 [(x−Yt)

2+(x+Yt)
2

1+2it ],
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depends, through Yt, on both the initial condition Y for the environment
and the initial condition X for the particle. As these are random, so is the
evolution of kt, with probability law determined by |Y0 |2. In particular,
kt does not satisfy Schrödinger’s equation for any H (x).

We remark that even when the x-system is dynamically decoupled
from its environment, its conditional wave function will not in general
evolve according to Schrödinger’s equation. Thus the conditional wave
function lacks the dynamical implications from which the wave function of
a system derives much of its physical significance. These are, however,
captured by the notion of effective wave function:

Suppose that Y(x, y)=k(x) F(y)+Y+(x, y), where F and Y+

have macroscopically disjoint y-supports. If Y ¥ supp F we say
that k is the effective wave function of the x-system. (2.7)

Of course, k is also the conditional wave function since nonvanishing
scalar multiples of wave functions are naturally identified.9

9 Note that in Bohmian mechanics the wave function is naturally a projective object since
wave functions differing by a multiplicative constant—possibly time-dependent—are asso-
ciated with the same vector field, and thus generate the same dynamics.

2.3. Decoherence

One might wonder why systems possess an effective wave function at
all. In fact, in general they don’t! For example the x-system will not have
an effective wave function when, for instance, it belongs to a larger micro-
scopic system whose effective wave function doesn’t factorize in the
appropriate way. However, the larger the environment of the x-system, the
greater is the potential for the existence of an effective wave function
for this system, owing in effect to the abundance of ‘‘measurement-like’’
interaction with a larger environment.10

10 To understand how this comes about one may suppose that initially the y-supports of F and
Y+ (cf. the definition above of effective wave function) are just ‘‘sufficiently’’ (but not
macroscopically) disjoint. Then, due to the interaction with the environment, the amount of
y-disjointness will tend to increase dramatically as time goes on, with, as in a chain reaction,
more and more degrees of freedom participating in this disjointness. When the effect of this
‘‘decoherence’’ is taken into account, one finds that even a small amount of y-disjointness
will often tend to become ‘‘sufficient,’’ and quickly ‘‘more than sufficient,’’ and finally
macroscopic.

We remark that it is the relative stability of the macroscopic disjoint-
ness employed in the definition of the effective wave function, arising from
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what are nowadays often called mechanisms of decoherence—the destruc-
tion of the coherent spreading of the wave function, the effectively irrever-
sible flow of ‘‘phase information’’ into the (macroscopic) environment
—which accounts for the fact that the effective wave function of a system
obeys Schrödinger’s equation for the system alone whenever this system is
isolated. One of the best descriptions of the mechanisms of decoherence,
though not the word itself, can be found in Bohm’s 1952 ‘‘hidden
variables’’ paper. (15)

Decoherence plays a crucial role in the very formulation of the various
interpretations of quantum theory loosely called decoherence theories
(Griffiths, (46) Omnès, (65) Leggett, (60) Zurek, (79) Joos and Zeh, (51) Gell-Mann
and Hartle (35)). In this regard we wish to emphasize, however, as did Bell in
his article ‘‘Against Measurement,’’ (11) that decoherence in no way comes to
grips with the measurement problem itself, being arguably a necessary, but
certainly not a sufficient, condition for its complete resolution. In contrast,
for Bohmian mechanics decoherence is purely phenomenological—it plays
no role whatsoever in the formulation (or interpretation) of the theory
itself11—and the very notion of effective wave function accounts at once for

11 However, decoherence plays an important role in the emergence of Newtonian mechanics as
the description of the macroscopic regime for Bohmian mechanics, supporting a picture of a
macroscopic Bohmian particle, in the classical regime, guided by a macroscopically well-
localized wave packet with a macroscopically sharp momentum moving along a classical
trajectory. It may, indeed, seem somewhat ironic that the gross features of our world should
appear classical because of interaction with the environment and the resulting wave function
entanglement, the characteristic quantum innovation.

the reduction of the wave packet in quantum measurement.
According to orthodox quantum measurement theory, (14, 74, 76, 77) after a

measurement, or preparation, has been performed on a quantum system,
the x-system, the wave function for the composite formed by system and
apparatus is of the form

C
a

ka é Fa (2.8)

with the different Fa supported by the macroscopically distinct (sets of )
configurations corresponding to the various possible outcomes of the mea-
surement, e.g., given by apparatus pointer orientations. Of course, for
Bohmian mechanics the terms of (2.8) are not all on the same footing: one
of them, and only one, is selected, or more precisely supported, by the
outcome—corresponding, say, to a0—which actually occurs. To emphasize
this we may write (2.8) in the form

k é F+Y+
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where k=ka0 , F=Fa0 , and Y+=;a ] a0
ka é Fa. By comparison with

(2.7) it follows that after the measurement the x-system has effective wave
function ka0 . This is how collapse (or reduction) of the effective wave function
to the one associated with the outcome a0 arises in Bohmian mechanics.

While in orthodox quantum theory the ‘‘collapse’’ is merely superim-
posed upon the unitary evolution—without a precise specification of the
circumstances under which it may legitimately be invoked—we have now,
in Bohmian mechanics, that the evolution of the effective wave function is
actually given by a stochastic process, which consistently embodies both
unitarity and collapse as appropriate. In particular, the effective wave
function of a subsystem evolves according to Schrödinger’s equation when
this system is suitably isolated. Otherwise it ‘‘pops in and out’’ of existence
in a random fashion, in a way determined by the continuous (but still
random) evolution of the conditional wave function kt. Moreover, it is the
critical dependence on the state of the environment and the initial condi-
tions which is responsible for the random behavior of the (conditional or
effective) wave function of the system.

2.4. Wave Function and State

As an important consequence of (2.6) we have, for the conditional
probability distribution of the configuration Xt of a system at time t, given
the configuration Yt of its environment, the fundamental conditional proba-
bility formula: (25)

ProbY0 (Xt ¥ dx | Yt)=|kt(x)|2 dx, (2.9)

where

ProbY0 (dQ)=|Y0(Q)|2 dQ,

with Q=(X, Y) the configuration of the universe at the (initial) time t=0.
Formula (2.9) is the cornerstone of our analysis (25) on the origin of ran-
domness in Bohmian mechanics. Since the right hand side of (2.9) involves
only the effective wave function, it follows that the wave function kt of a
subsystem represents maximal information about its configuration Xt. In
other words, given the fact that its wave function is kt, it is in principle
impossible to know more about the configuration of a system than what is
expressed by the right hand side of (2.9), even when the detailed configura-
tion Yt of its environment is taken into account (25)

ProbY0 (Xt ¥ dx | Yt)=ProbY0 (Xt ¥ dx | kt)=|kt(x)|2 dx. (2.10)
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The fact that the knowledge of the configuration of a system must be
mediated by its wave function may partially account for the possibility of
identifying the state of a system—its complete description—with its wave
function without encountering any practical difficulties. This is primarily
because of the wave function’s statistical role, but its dynamical role is also
relevant here. Thus it is natural, even in Bohmian mechanics, to regard the
wave function as the ‘‘state’’ of the system. This attitude is supported by
the asymmetric roles of configuration and wave function: while the fact
that the wave function is k entails that the configuration is distributed
according to |k|2, the fact that the configuration is X has no implications
whatsoever for the wave function.12 Indeed, such an asymmetry is

12 The ‘‘fact’’ (that the configuration is X) shouldn’t be confused with the ‘‘knowledge of the
fact:’’ the latter does have such implications! (25)

grounded in the dynamical laws and in the initial conditions. k is always
assumed to be fixed, being usually under experimental control, while X is
always taken as random, according to the quantum equilibrium distribution.

When all is said and done, it is important to bear in mind that regard-
ing k as the ‘‘state’’ is only of practical value, and shouldn’t obscure the
more important fact that the most detailed description—the complete state
description—is given (in Bohmian mechanics) by the wave function and the
configuration.

2.5. The Stern–Gerlach Experiment

Information about a system does not spontaneously pop into our
heads or into our (other) ‘‘measuring’’ instruments; rather, it is generated
by an experiment: some physical interaction between the system of interest
and these instruments, which together (if there is more than one) comprise
the apparatus for the experiment. Moreover, this interaction is defined by,
and must be analyzed in terms of, the physical theory governing the
behavior of the composite formed by system and apparatus. If the appara-
tus is well designed, the experiment should somehow convey significant
information about the system. However, we cannot hope to understand the
significance of this ‘‘information’’—for example, the nature of what it is, if
anything, that has been measured—without some such theoretical analysis.

As an illustration of such an analysis we shall discuss the Stern–
Gerlach experiment from the standpoint of Bohmian mechanics. But first
we must explain how spin is incorporated into Bohmian mechanics: If Y
is spinor-valued, the bilinear forms appearing in the numerator and
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denominator of (2.2) should be understood as spinor-inner-products; e.g.,
for a single spin 1

2 particle the two-component wave function

Y — RY+(x)
Y−(x)
S

generates the velocity

vY=
(

m
Im
(Y, NY)
(Y, Y)

(2.11)

where ( · , · ) denotes the scalar product in the spin space C2. The wave
function evolves via (2.1), where now the Hamiltonian H contains the Pauli
term, for a single particle proportional to B ·s, that represents the coupling
between the ‘‘spin’’ and an external magnetic field B; here s=(sx, sy, sz)
are the Pauli spin matrices which can be taken to be

sx=R
0 1

1 0
S sy=R

0 −i

i 0
S sz=R

1 0

0 −1
S .

Let’s now focus on a Stern–Gerlach ‘‘measurement of the operator sz:’’
An inhomogeneous magnetic field B is established in a neighborhood of the
origin, by means of a suitable arrangement of magnets. This magnetic field
is oriented in the positive z-direction, and is increasing in this direction. We
also assume that the arrangement is invariant under translations in the
x-direction, i.e., that the geometry does not depend upon x-coordinate.
A particle with a fairly definite momentum is directed towards the origin
along the negative y-axis. For simplicity, we shall consider a neutral spin-
1/2 particle whose wave function Y evolves according to the Hamiltonian

H=−
(
2

2m
N2−ms ·B (2.12)

where m is a positive constant (if one wishes, one might think of a fictitious
electron not feeling the Lorentz force).

The inhomogeneous field generates a vertical deflection of Y away
from the y-axis, which for Bohmian mechanics leads to a similar deflection
of the particle trajectory according to the velocity field defined by (2.11): if
its wave function Y were initially an eigenstate of sz of eigenvalue 1 or −1,
i.e., if it were of the form

Y (+)=k (+) é F0(x) or Y (−)=k (−) é F0(x)
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where

k (+) — R1
0
S and k (−) — R0

1
S (2.13)

then the deflection would be in the positive (negative) z-direction (by a
rather definite angle). This limiting behavior is readily seen for F0=
F0(z) f(x, y) and B=(0, 0, B), so that the z-motion is completely
decoupled from the motion along the other two directions, and by making
the standard (albeit unphysical) assumption (13, 14)

“B
“z
=const > 0, (2.14)

whence

ms ·B=(b+az) sz

where a > 0 and b are constants. Then

Y (+)
t =R

F (+)
t (z) ft(x, y)

0
S and Y (−)

t =R
0

F (−)
t (z) ft(x, y)

S

where F (±)
t are the solutions of

i(
“F (±)

t

“t
=−

(
2

2m
“
2F (±)

t

“z2
+ (b+a z) F (±)

t , (2.15)

for initial conditions F (±)
0 =F0(z). Since z generates translations of the

z-component of the momentum, the behavior described above follows
easily. More explicitly, the limiting behavior for tQ. readily follows by a
stationary phase argument on the explicit solution13 of (2.15). More simply,

13 Equation (2.15) is readily solved:

F (±)
t (z)=F G (±)(z, zŒ; t) F0(zŒ) dzŒ,

where (by the standard rules for the Green’s function of linear and quadratic Hamiltonians)

G (±)(z, zŒ; t)== m
2pi(t

e
i
(
( m2t (z−zŒ−(±)

at2

m )
2+

(±) at
2 (z−zŒ−(±) at

2

m )−(±)(azŒ+b) t+
at3

3m ).

we may consider the initial Gaussian state

F0=
e (−

z2

4d2
)

(2d2p)
1
4
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for which |F±t (z)|
2, the probability density of the particle being at a point of

z-coordinate z, is, by the linearity of the interaction in (2.15), a Gaussian
with mean and mean square deviation given respectively by

z̄(t)=(±)
at2

2m
d(t)=d=1+ (

2t2

2m2d4
. (2.16)

For a more general initial wave function,

Y=k é F0 k=ak (+)+bk (−) (2.17)

passage through the magnetic field will, by linearity, split the wave function
into an upward-deflected piece (proportional to k (+)) and a downward-
deflected piece (proportional to k (−)), with corresponding deflections of the
trajectories. The outcome is registered by detectors placed in the paths of
these two possible ‘‘beams.’’ Thus of the four kinematically possible out-
comes (‘‘pointer orientations’’) the occurrence of no detection and of
simultaneous detection can be ignored as highly unlikely, and the two
relevant outcomes correspond to registration by either the upper or the
lower detector. Accordingly, for a measurement of sz the experiment is
equipped with a ‘‘calibration’’ (i.e., an assignment of numerical values to
the outcomes of the experiment) l+=1 for upper detection and l−=−1
for lower detection (while for a measurement of the z-component of the
spin angular momentum itself the calibration is given by 1

2 (l± ).
Note that one can completely understand what’s going on in this

Stern–Gerlach experiment without invoking any putative property of the
electron such as its actual z-component of spin that is supposed to be
revealed in the experiment. For a general initial wave function there is no
such property. What is more, the transparency of the analysis of this
experiment makes it clear that there is nothing the least bit remarkable
(or for that matter ‘‘nonclassical’’) about the nonexistence of this property.
But the failure to pay attention to the role of operators as observables, i.e.,
to precisely what we should mean when we speak of measuring operator-
observables, helps create a false impression of quantum peculiarity.

2.6. A Remark on the Reality of Spin in Bohmian Mechanics

Bell has said that (for Bohmian mechanics) spin is not real. Perhaps he
should better have said: ‘‘Even spin is not real,’’ not merely because of all
observables, it is spin which is generally regarded as quantum mechanically
most paradigmatic, but also because spin is treated in orthodox quantum
theory very much like position, as a ‘‘degree of freedom’’—a discrete index
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which supplements the continuous degrees of freedom corresponding to
position—in the wave function.

Be that as it may, his basic meaning is, we believe, this: Unlike posi-
tion, spin is not primitive, i.e., no actual discrete degrees of freedom, anal-
ogous to the actual positions of the particles, are added to the state
description in order to deal with ‘‘particles with spin.’’ Roughly speaking,
spin is merely in the wave function. At the same time, as explained in Sec-
tion 2.5, ‘‘spin measurements’’ are completely clear, and merely reflect the
way spinor wave functions are incorporated into a description of the
motion of configurations.

In this regard, it might be objected that while spin may not be primi-
tive, so that the result of our ‘‘spin measurement’’ will not reflect any initial
primitive property of the system, nonetheless this result is determined by
the initial configuration of the system, i.e., by the position of our electron,
together with its initial wave function, and as such—as a function Xsz (q, k)
of the state of the system—it is some property of the system and in partic-
ular it is surely real. We shall address this issue in Sections 8.3 and 8.4.

2.7. The Framework of Discrete Experiments

We shall now consider a generic experiment. Whatever its significance,
the information conveyed by the experiment is registered in the apparatus
as an output, represented, say, by the orientation of a pointer. Moreover,
when we speak of a generic experiment, we have in mind a fairly definite
initial state of the apparatus, the ready state F0=F0(y), one for which the
apparatus should function as intended, and in particular one in which the
pointer has some ‘‘null’’ orientation, as well as a definite initial state of
the system k=k(x) on which the experiment is performed. Under these
conditions it turns out (25) that the initial t=0 wave function Y0=Y0(q) of
the composite system formed by system and apparatus, with generic con-
figuration q=(x, y), has a product form, i.e.,

Y0=k é F0.

Such a product form is an expression of the independence of system and
apparatus immediately before the experiment begins.14

14 It might be argued that it is somewhat unrealistic to assume a sharp preparation of k, as
well as the possibility of resetting the apparatus always in the same initial state F0. We shall
address this issue in Section 6.

For Bohmian mechanics we should expect in general, as a consequence
of the quantum equilibrium hypothesis, that the outcome of the experi-
ment—the final pointer orientation—will be random: Even if the system
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and apparatus initially have definite, known wave functions, so that the
outcome is determined by the initial configuration of system and appara-
tus, this configuration is random, since the composite system is in quantum
equilibrium, and the distribution of the final configuration is given by
|YT(x, y)|2, where YT is the wave function of the system-apparatus com-
posite at the time t=T when the experiment ends, and x, respectively y, is
the generic system, respectively apparatus, configuration.

Suppose now that YT has the form (2.8), which roughly corresponds
to assuming that the experiment admits, i.e., that the apparatus is so
designed that there is, only a finite (or countable) set of possible outcomes,
given, say, by the different possible macroscopically distinct pointer orien-
tations of the apparatus and corresponding to a partition of the apparatus
configuration space into macroscopically disjoint regions Ga, a=1, 2,... .15

15 Note that to assume there are only finitely, or countably, many outcomes is really no
assumption at all, since the outcome should ultimately be converted to digital form, what-
ever its initial representation may be.

We arrive in this way at the notion of discrete experiment, for which the
time evolution arising from the interaction of the system and apparatus
from t=0 to t=T is given by the unitary map

U:H é F0 QÂ
a

H é Fa, k é F0 WYT=C
a

ka é Fa (2.18)

where H is the system Hilbert space of square-integrable wave functions
with the usual inner product

Ok, fP=F kg(x) f(x) dx

and the Fa are a fixed set of (normalized) apparatus states supported by
the macroscopically distinct regions Ga of apparatus configurations.

The experiment usually comes equipped with an assignment of numer-
ical values la (or a vector of such values) to the various outcomes a. This
assignment is defined by a ‘‘calibration’’ function F on the apparatus con-
figuration space assuming on each region Ga the constant value la. If for
simplicity we assume that these values are in one-to-one correspondence
with the outcomes16 then

16 We shall consider the more general case later on in Section 3.2.4.

pa=F
F−1(la)

|YT(x, y)|2 dx dy=F
Ga
|YT(x, y)|2 dx dy (2.19)
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is the probability of finding la, for initial system wave function k. Since
FaŒ(y)=0 for y ¥ Ga unless a=aŒ, we obtain

pa=F dx F
Ga

:C
aŒ

kaŒ(x) FaŒ(y):
2

dy=F |ka(x)|2 dx=||ka ||2. (2.20)

Note that when the result la is obtained, the effective wave function of the
system undergoes the transformation kQ ka.

A simple example of a discrete experiment is provided by the map

U: k é F0 W C
a

cak é Fa, (2.21)

where the ca are complex numbers such that ;a |ca |2=1; then pa=|ca |2.
Note that the experiment defined by (2.21) resembles a coin-flip more than
a measurement since the outcome a occurs with a probability independent
of k.

2.8. Reproducibility and its Consequences

Though for a generic discrete experiment there is no reason to expect
the sort of ‘‘measurement-like’’ behavior typical of familiar quantum mea-
surements, there are, however, special experiments whose outcomes are
somewhat less random than we might have thought possible. According to
Schrödinger: (72)

The systematically arranged interaction of two systems (measuring object and
measuring instrument) is called a measurement on the first system, if a directly-
sensible variable feature of the second (pointer position) is always reproduced
within certain error limits when the process is immediately repeated (on the same
object, which in the mean time must not be exposed to additional influences).

To implement the notion of ‘‘measurement-like’’ experiment con-
sidered by Schrödinger, we first make some preliminary observations con-
cerning the unitary map (2.18). Let P[Fa] be the orthogonal projection in
the Hilbert space Áa H é Fa onto the subspace H é Fa and let Ha6 be the
subspaces of H defined by

P[Fa][U(H é F0)]=Ha
6 é Fa. (2.22)

(Since the vectors in Ha
6 arise from projecting YT=;a ka é Fa onto its

a-component, Ha6 is the space of the ‘‘collapsed’’ wave functions associated
with the occurrence of the outcome a.) Then

U(H é F0) ıÂ
a

Ha
6 é Fa. (2.23)
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Note, however, that it need not be the case that U(H é F0)=Áa Ha
6 é Fa,

and that the spaces Ha
6 need be neither orthogonal nor distinct; e.g., for

(2.21) Ha6=H and U(H é F0)=H é;a caFa ]Áa H é Fa.17

17 Note that if H has finite dimension n, and the number of outcomes a is m,
dim[U(H é F0)]=n, while dim[Áa H é Fa]=n·m.

A ‘‘measurement-like’’ experiment is one which is reproducible in the
sense that it will yield the same outcome as originally obtained if it is
immediately repeated. ( This means in particular that the apparatus must be
immediately reset to its ready state, or a fresh apparatus must be employed,
while the system is not tampered with so that its initial state for the
repeated experiment is its final state produced by the first experiment.)
Thus the experiment is reproducible if

U(Ha6 é F0) ıHa
6 é Fa (2.24)

or, equivalently, if there are spaces H −

a ıHa
6 such that

U(Ha6 é F0)=H −

a é Fa. (2.25)

Note that it follows from the unitarity of U and the orthogonality of
the subspaces Ha

6 é Fa that the subspaces Ha
6 é F0 and hence the Ha

6 are
also orthogonal. Therefore, by taking the orthogonal sum over a of both
sides of (2.25), we obtain

Â
a

U(Ha6 é F0)=U 1Â
a

Ha
6 é F0 2=Â

a

H −

a é Fa. (2.26)

If we now make the simplifying assumption that the subspaces Ha6 are finite
dimensional, we have from unitarity that Ha

6=H −

a, and thus, by compar-
ing (2.23) and (2.26), that equality holds in (2.23) and that

H=Â
a

Ha (2.27)

with

U(Ha é F0)=Ha é Fa (2.28)

for

Ha —Ha
6=H −

a.
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Therefore if the wave function of the system is initially in Ha, outcome
a definitely occurs and the value la is thus definitely obtained (assuming
again for simplicity one-to-one correspondence between outcomes and
results). It then follows that for a general initial system wave function

k=C
a

PHa
k,

where PHa
is the projection in H onto the subspace Ha, that the outcome a,

with result la, is obtained with (the usual) probability

pa=||PHa
k||2=Ok, PHa

kP, (2.29)

which follows from (2.28), (2.20), and (2.18) since U(PHa
k é F0)=ka é Fa

and hence ||PHa
k||=||ka || by unitarity. In particular, when the la are real-

valued, the expected value obtained is

C
a

pala=C
a

la ||PHa
k||2=Ok, AkP (2.30)

where

A=C
a

laPHa
(2.31)

is the self-adjoint operator with eigenvalues la and spectral projections PHa
.

2.9. Operators as Observables

What we wish to emphasize here is that, insofar as the statistics for the
values which result from the experiment are concerned,

the relevant data for the experiment are the collection {Ha}
of special orthogonal subspaces, together with the
corresponding calibration {la}, (2.32)

and this data is compactly expressed and represented by the self-adjoint
operator A, on the system Hilbert spaceH, given by (2.31). Thus, under the
assumptions we have made, with a reproducible experiment E we naturally
associate an operator A=AE, a single mathematical object, defined on the
system alone, in terms of which an efficient description (2.29) of the statis-
tics of the possible results is achieved; we shall denote this association by

EW A. (2.33)
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If we wish we may speak of ‘‘operators as observables,’’ and when an
experiment E is associated with a self-adjoint operator A, as described
above, we may say that the experiment E is a ‘‘measurement’’ of the observ-
able represented by the self-adjoint operator A. If we do so, however, it is
important that we appreciate that in so speaking we merely refer to what
we have just derived: the role of operators in the description of certain
experiments.18

18 Operators as observables also naturally convey information about the system’s wave func-
tion after the experiment. For example, for an ideal measurement, when the outcome is a
the wave function of the system after the experiment is (proportional to) PHa

k. We shall
elaborate upon this in the next section.

So understood, the notion of operator-as-observable in no way implies
that anything is genuinely measured in the experiment, and certainly not
the operator itself! In a general experiment no system property is being
measured, even if the experiment happens to be measurement-like. (Posi-
tion measurements in Bohmian mechanics are of course an important
exception.) What in general is going on in obtaining outcome a is com-
pletely straightforward and in no way suggests, or assigns any substantive
meaning to, statements to the effect that, prior to the experiment, observ-
able A somehow had a value la—whether this be in some determinate sense
or in the sense of Heisenberg’s ‘‘potentiality’’ or some other ill-defined
fuzzy sense—which is revealed, or crystallized, by the experiment. Even
speaking of the observable A as having value la when the system’s wave
function is in Ha, i.e., when this wave function is an eigenstate of A of
eigenvalue la—insofar as it suggests that something peculiarly quantum is
going on when the wave function is not an eigenstate whereas in fact there
is nothing the least bit peculiar about the situation—perhaps does more
harm than good.

It might be objected that we are claiming to arrive at the quantum
formalism under somewhat unrealistic assumptions, such as, for example,
reproducibility or finite dimensionality. We agree. But this objection misses
the point of the exercise. The quantum formalism itself is an idealization;
when applicable at all, it is only as an approximation. Beyond illuminating
the role of operators as ingredients in this formalism, our point was to
indicate how naturally it emerges. In this regard we must emphasize that
the following question arises for quantum orthodoxy, but does not arise for
Bohmian mechanics: For precisely which theory is the quantum formalism
an idealization?

We shall discuss how to go beyond the idealization involved in the
quantum formalism in Section 4—after having analyzed it thoroughly in
Section 3. First we wish to show that many more experiments than those
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satisfying our assumptions can indeed be associated with operators in
exactly the manner we have described.

2.10. The General Framework of Bohmian Experiments

According to (2.19) the statistics of the results of a discrete experiment
are governed by the probability measure rYT p F

−1, where rYT (dq)=
|YT(q)|2 dq is the quantum equilibrium measure. Note that discreteness of
the value space of F plays no role in the characterization of this measure.
This suggests that we may consider a more general notion of experiment,
not based on the assumption of a countable set of outcomes, but only on
the unitarity of the operator U, which transforms the initial state k é F0
into the final state YT, and on a generic calibration function F from the
configuration space of the composite system to some value space, e.g.,
R or Rm, giving the result of the experiment as a function F(QT) of the
final configuration QT of system and apparatus. We arrive in this way at
the notion of general experiment

E — {F0, U, F}, (2.34)

where the unitary U embodies the interaction of system and apparatus and
the function F could be completely general. Of course, for application to
the results of real-world experiments F might represent the ‘‘orientation of
the apparatus pointer’’ or some coarse-graining thereof.

Performing E on a system with initial wave function k leads to the
result Z=F(QT) and since QT is randomly distributed according to the
quantum equilibrium measure rYT , the probability distribution of Z is
given by the induced measure

rZk=rYT p F
−1. (2.35)

(We have made explicit only the dependence of the measure on k, since the
initial apparatus state F0 is of course fixed, defined by the experiment E.)
Note that this more general notion of experiment eliminates the slight
vagueness arising from the imprecise notion of macroscopic upon which
the notion of discrete experiment is based. Note also that the structure
(2.34) conveys information about the wave function (2.6) of the system
after a certain result F(QT) is obtained.

Note, however, that this somewhat formal notion of experiment may
not contain enough information to determine the detailed Bohmian
dynamics, which would require specification of the Hamiltonian of the
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system-apparatus composite, that might not be captured by U. In particu-
lar, the final configuration QT may not be determined, for given initial
wave function, as a function of the initial configuration of system and
apparatus. E does, however, determine what is relevant for our purposes
about the random variable QT, namely its distribution, and hence that of
Z=F(QT).

Let us now focus on the right hand side of Eq. (2.29), which
establishes the association of operators with experiments: Ok, PHa

kP is the
probability that ‘‘the operator A has value la,’’ and according to standard
quantum mechanics the statistics of the results of measuring a general self-
adjoint operator A, not necessarily with pure point spectrum, in the (nor-
malized) state k are described by the probability measure

DW mAk(D) — Ok, PA(D) kP (2.36)

where D is a (Borel) set of real numbers and PA: DW PA(D) is the projec-
tion-valued-measure (PVM) uniquely associated with A by the spectral
theorem. (We recall (70) that a PVM is a normalized, countably additive set
function whose values are, instead of nonnegative reals, orthogonal projec-
tions on a Hilbert space H. Any PVM P on H determines, for any given
k ¥H, a probability measure mk — m

P
k : DW Ok, P(D) kP on R. Integration

against projection-valued-measure is analogous to integration against
ordinary measures, so that B — > f(l) P(dl) is well-defined, as an operator
on H. Moreover, by the spectral theorem every self-adjoint operator A is
of the form A=> lP(dl), for a unique projection-valued-measure P=PA,
and > f(l) P(dl)=f(A).)

It is then rather clear how (2.33) extends to general self-adjoint opera-
tors: a general experiment E is a measurement of the self-adjoint operator A
if the statistics of the results of E are given by (2.36), i.e.,

EW A if and only if rZk=m
A
k . (2.37)

In particular, if EW A, then the moments of the result of E are the
moments of A:

OZnP=F lnOk, P(dl) kP=Ok, AnkP.

3. THE QUANTUM FORMALISM

The spirit of this section will be rather different from that of the pre-
vious one. Here the focus will be on the formal structure of experiments
measuring self-adjoint operators. Our aim is to show that the standard
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quantum formalism emerges from a formal analysis of the association
EW A between operator and experiment provided by (2.37). By ‘‘formal
analysis’’ we mean not only that the detailed physical conditions under
which might EW A hold (e.g., reproducibility) will play no role, but also
that the practical requirement that E be physically realizable will be of no
relevance whatsoever.

Note that such a formal approach is unavoidable in order to recover
the quantum formalism. In fact, within the quantum formalism one may
consider measurements of arbitrary self-adjoint operators, for example, the
operator A=X̂2P̂+P̂X2, where X̂ and P̂ are respectively the position and
the momentum operators. However, it may very well be the case that no
‘‘real world’’ experiment measuring A exists. Thus, in order to allow for
measurements of arbitrary self-adjoint operators we shall regard (2.34) as
characterizing an ‘‘abstract experiment;’’ in particular, we shall not regard
the unitary map U as arising necessarily from a (realizable) Schrödinger
time evolution. We may also speak of virtual experiments.

In this regard one should observe that to resort to a formal analysis is
indeed quite common in physics. Consider, e.g., the Hamiltonian formula-
tion of classical mechanics that arose from an abstraction of the physical
description of the world provided by Newtonian mechanics. Here we may
freely speak of completely general Hamiltonians, e.g., H(p, q)=p6, with-
out being concerned about whether they are physical or not. Indeed, only
very few Hamiltonians correspond to physically realizable motions!

A Warning. As we have stressed in the introduction and in Section 2.9,
when we speak here of a measurement we don’t usually mean a genuine
measurement—an experiment revealing the pre-existing value of a quantity
of interest, the measured quantity or property. (We speak in this unfortu-
nate way because it is standard.) Genuine measurement will be discussed
much later, in Section 7.

3.1. Weak Formal Measurements

The first formal notion we shall consider is that of weak formal mea-
surement, formalizing the relevant data of an experiment measuring a self-
adjoint operator:

Any orthogonal decomposition H=Á a Ha, i.e., any complete
collection {Ha} of mutually orthogonal subspaces, paired with
any set {la} of distinct real numbers, defines the weak formal
measurement M — {(Ha, la)} — {Ha, la}. (3.1)
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(Compare (3.1) with (2.32) and note that now we are not assuming that the
spaces Ha are finite-dimensional.) The notion of weak formal measurement
is aimed at expressing the minimal structure that all experiments (some or
all of which might be virtual) measuring the same operator A=; laPHa

have in common (PHa
is the orthogonal projection onto the subspace Ha ).

Then, ‘‘to perform M’’ shall mean to perform (at least virtually) any one of
these experiments, i.e., any experiment such that

pa=Ok, PHa
kP (3.2)

is the probability of obtaining the result la on a system initially in the state k.
( This is of course equivalent to requiring that the result la is definitely
obtained if and only if the initial wave function k ¥Ha.)

Given M — {Ha, la} consider the set function

P: DW P(D) — C
la ¥ D

PHa
, (3.3)

where D is a set of real numbers (technically, a Borel set). Then

(1) P is normalized, i.e., P(R)=I, where I is the identity operator
and R is the real line,

(2) P(D) is an orthogonal projection, i.e., P(D)2=P(D)=P(D)g,

(3) P is countably additive, i.e., P(1 n Dn)=;n P(Dn), for Dn disjoint
sets.

Thus P is a projection-valued-measure and therefore the notion of weak
formal measurement is indeed equivalent to that of ‘‘discrete’’ PVM, that
is, a PVM supported by a countable set {la} of values.

More general PVMs, e.g., PVMs supported by a continuous set of
values, will arise if we extend (3.1) and base the notion of weak formal
measurement upon the general association (2.37) between experiments and
operators. If we stipulate that

any projection-valued-measure P on H

defines a weak formal measurement M — P, (3.4)

then ‘‘to perform M’’ shall mean to perform any experiment E associated
with A=> lP(dl) in the sense of (2.37).

Note that since by the spectral theorem there is a natural one-to-one
correspondence between PVMs and self-adjoint operators, we may speak
equivalently of the operator A=AM, for given M, or of the weak formal
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M=MA, for given A. In particular, the weak formal measurement MA

represents the equivalence class of all experiments EQ A.

3.2. Strong Formal Measurements

We wish now to classify the different experiments E associated with
the same self-adjoint operator A by taking into account the effect of E on
the state of the system, i.e., the state transformations kQ ka induced by
the occurrence of the various results la of E. Accordingly, unless otherwise
stated, from now on we shall assume E to be a discrete experiment measur-
ing A=; laPHa

, for which the state transformation kQ ka is defined by
(2.18). This leads to the notion of strong formal measurements. For the
most important types of strong formal measurements, ideal, normal and
standard, there is a one-to-one correspondence between a’s and numerical
results la.

3.2.1. Ideal Measurements

Given a weak formal measurement of A, the simplest possibility for
the transition kQ ka is that when the result la is obtained, the initial state
k is projected onto the corresponding space Ha, i.e., that

kQ ka=PHa
k. (3.5)

This prescription defines uniquely the ideal measurement of A. ( The trans-
formation kQ ka should be regarded as defined only in the projective
sense: kQ ka and kQ cka (c ] 0) should be regarded as the same transi-
tion.) ‘‘To perform an ideal measurement of A’’ shall then mean to perform
a discrete experiment E whose results are statistically distributed according
to (3.2) and whose state transformations (2.18) are given by (3.5).

Under an ideal measurement the wave function changes as little as
possible: an initial k ¥Ha is unchanged by the measurement. Ideal mea-
surements have always played a privileged role in quantum mechanics. It is
the ideal measurements that are most frequently discussed in textbooks. It
is for ideal measurements that the standard collapse rule is obeyed. When
Dirac (23) wrote: ‘‘a measurement always causes the system to jump into an
eigenstate of the dynamical variable that is being measured’’ he was refer-
ring to an ideal measurement.

3.2.2. Normal Measurements

The rigid structure of ideal measurements can be weakened by requir-
ing only that Ha as a whole, and not the individual vectors in Ha, is
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unchanged by the measurement and therefore that the state transforma-
tions induced by the measurement are such that when the result la is
obtained the transition

kQ ka=UaPHa
k (3.6)

occurs, where the Ua are operators on Ha (Ua:Ha QHa ). Then for any
such discrete experiment E measuring A, the Ua can be chosen so that (3.6)
agrees with (2.18), i.e., so that for k ¥Ha, U(k é F0)=Uak é Fa, and
hence so that Ua is unitary (or at least a partial isometry). Such a mea-
surement, with unitaries Ua:Ha QHa, will be called a normal measurement
of A.

In contrast with an ideal measurement, a normal measurement of an
operator is not uniquely determined by the operator itself: additional
information is needed to determine the transitions, and this is provided by
the family {Ua}. Different families define different normal measurements
of the same operator. Note that ideal measurements are, of course, normal
(with Ua=Ia — identity on Ha ), and that normal measurements with one-
dimensional subspaces Ha are necessarily ideal.

Since the transformations (3.6) leave invariant the subspaces Ha,
the notion of normal measurement characterizes completely the class of
reproducible measurements of self-adjoint operators. Following the termi-
nology introduced by Pauli, (66) normal measurement are sometimes called
measurements of first kind. Normal measurements are also quantum non
demolition (QND) measurements, (18) defined as measurements such that the
operators describing the induced state transformations, i.e., the operators
Ra — UaPHa

, commute with the measured operator A=; laPHa
. ( This

condition is regarded as expressing that the measurement leaves the
measured observable A unperturbed.)

3.2.3. Standard Measurements

We may now drop the condition that the Ha are left invariant by the
measurement and consider the very general state transformations

kQ ka=TaPHa
k (3.7)

with operators Ta:Ha QH. Then, exactly as for the case of normal mea-
surements, it follows that Ta can be chosen to be unitary from Ha onto its
range Ha
6. The subspaces Ha

6 need be neither orthogonal nor distinct. We
shall write Ra=TaPHa

for the general transition operators. With Ta as
chosen, Ra is characterized by the equation Rg

aRa=PHa
(where Rg

a denotes
the adjoint of Ra ).
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The state transformations (3.7), given by unitaries Ta:Ha QHa
6, or

equivalently by bounded operators Ra on H satisfying Rg
aRa=PHa

, define
what we shall call a standard measurement of A. Note that normal mea-
surements are standard measurements with Ha

6=Ha (or Ha
6 …Ha ).

Although standard measurements are in a sense more realistic than normal
measurements (real world measurements are seldom reproducible in a strict
sense), they are very rarely discussed in textbooks. We emphasize that the
crucial data in a standard measurement is given by Ra, which governs both
the state transformations (kQ Rak) and the probabilities (pa=Ok, PHa

kP
=||Rak||2).

We shall illustrate the main features of standard measurements by
considering a very simple example: Let {e0, e1, e2,...}, be a fixed ortho-
normal basis of H and consider the standard measurement whose results
are the numbers 0, 1, 2,... and whose state transformations are defined by
the operators

Ra — |e0POea | i.e., Rak=Oea, kP e0, a=0, 1, 2,... .

With such Ra’s are associated the projections Pa=Rg
aRa=|eaPOea |, i.e., the

projections onto the one dimensional spaces Ha spanned respectively by the
vectors ea. Thus, this is a measurement of the operator A=;a a |eaPOea |.
Note that the spaces Ha

6, i.e., the ranges of the Ra’s, are all the same and
equal to the space H0 generated by the vector e0. The measurement is then
not normal since Ha ]Ha

6. Finally, note that this measurement could be
regarded as giving a simple model for a photo detection experiment, where
any state is projected onto the ‘‘vacuum state’’ e0 after the detection.

3.2.4. Strong Formal Measurements

We shall now relax the condition that aW la is one-to-one, as we
would have to do for an experiment having a general calibration aW la,
which need not be invertible. This leads to (what we shall call ) a strong
formal measurement. Since this notion provides the most general for-
malization of the notion of a ‘‘measurement of a self-adjoint operator’’ that
takes into account the effect of the measurement on the state of the system,
we shall spell it out precisely as follows:

Any complete ( labelled) collection {Ha} of mutually orthogonal
subspaces, any (labelled) set {la} of not necessarily distinct real
numbers, and any (labelled) collection {Ra} of bounded
operators on H, such that Rg

aRa — PHa
(the projection onto Ha),

defines a strong formal measurement. (3.8)
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A strong formal measurement will be compactly denoted by M —

{(Ha, la, Ra)} — {Ha, la, Ra}, or even more compactly by M — {la, Ra}
(the spaces Ha can be extracted from the projections PHa

=Rg
aRa ). With

M is associated the operator A=; laPHa
. Note that since the la are not

necessarily distinct numbers, PHa
need not be the spectral projection PA(la)

associated with la; in general

PA(l)= C
a: la=l

PHa
,

i.e., it is the sum of all the PHa
’s that are associated with the value l.19 ‘‘To

19 It is for this reason that it would be pointless and inappropriate to similarly generalize weak
measurements. It is only when the state transformation is taken into account that the dis-
tinction between the outcome a (which determines the transformation) and the result la
(whose probability the formal measurement is to supply) becomes relevant.

perform the measurement M’’ on a system initially in k shall accordingly
mean to perform a discrete experiment E such that: (1) the probability p(l)
of getting the result l is governed by A, i.e., p(l)=Ok, PA(l) kP, and
(2) the state transformations of E are those prescribed by M, i.e.,
kQ ka=Rak.

Observe that strong formal measurements do provide a more realistic
formalization of the notion of measurement of an operator than standard
measurements: the notion of discrete experiment does not imply a one-to-
one correspondence between outcomes, i.e., final macroscopic configura-
tions of the pointer, and the numerical results of the experiment.

The relationship between (weak or strong) formal measurements, self-
adjoint operators, and experiments can be summarized by the following
sequence of maps:

EWMW A. (3.9)

The first map expresses that M (weak or strong) is a formalization of E—it
contains the ‘‘relevant data’’ about E—and it will be many-to-one if M is a
weak formal measurement;20 the second map expresses that M is a formal

20 There is an obvious natural unitary equivalence between the preimages E of a strong formal
measurement M.

measurement of A and it will be many-to-one if M is (required to be)
strong and one-to-one if M is weak. Note that EW A is always many-to-
one.
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3.3. From Formal Measurements to Experiments

Given a strong measurement M — {Ha, la, Ra} one may easily con-
struct a map (2.18) defining a discrete experiment E=EM associated
with M:

U: k é F0 W C
a

(Rak) é Fa. (3.10)

The unitarity of U (from H é F0 onto the range of U) follows then
immediately from the orthonormality of the {Fa} since

C
a

||Rak||2=C
a

Ok, Rg
aRakP=7k, C

a

PHa
k8=Ok, kP=||k||2. (3.11)

This experiment is abstractly characterized by: (1) the finite or countable
set I of outcomes a, (2) the apparatus ready state F0 and the set {Fa} of
normalized apparatus states, (3) the unitary map U:H é F0 QÁa H é Fa
given by (3.10), (4) the calibration aW la assigning numerical values (or a
vector of such values) to the various outcomes a. Note that U need not
arise from a Schrödinger Hamiltonian governing the interaction between
system and apparatus. Thus E should properly be regarded as an
‘‘abstract’’ experiment as we have already pointed out in the introduction
to this section.

3.4. Von Neumann Measurements

We shall now briefly comment on the relation between our approach,
based on formal measurements, and the widely used formulation of
quantum measurement in terms of von Neumann measurements. (74)

A von Neumann measurement of A=; laPHa
on a system initially in

the state k can be described as follows (while the nondegeneracy of the
eigenvalues of A—i.e., that dim(Ha)=1—is usually assumed, we shall not
do so): Assume that the (relevant) configuration space of the apparatus,
whose generic configuration shall be denoted by y, is one-dimensional, so
that its Hilbert space HA 4 L2(R), and that the interaction between system
and apparatus is governed by the Hamiltonian

H=HvN=cA é P̂y (3.12)

where P̂y — i( “/“y is (minus) the momentum operator of the apparatus.
Let F0=F0(y) be the ready state of the apparatus. Then for k=PHa

k one
easily sees that the unitary operator U — e−iTH/( transforms the initial state
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ka é F0 into ka é Fa where Fa=F0(y−lacT), so that the action of U on
general k=; PHa

k is

U: k é F0 QC
a

(PHa
k) é Fa. (3.13)

If F0 has sufficiently narrow support, say around y=0, the Fa will have
disjoint support around the ‘‘pointer positions’’ ya=lacT, and thus will
be orthogonal, so that, with calibration F(y)=y/cT (more precisely,
F(y)=ya/cT for y in the support of Fa ), the resulting von Neumann
measurement becomes a discrete experiment measuring A; comparing (3.13)
and (3.5) we see that it is an ideal measurement of A.21

21 It is usually required that von Neumann measurements be impulsive (c large, T small) so
that only the interaction term (3.12) contributes significantly to the total Hamiltonian over
the course of the measurement.

Thus, the framework of von Neumann measurements is less general
than that of discrete experiments, or equivalently of strong formal mea-
surements; at the same time, since the Hamiltonian HvN is not of
Schrödinger type, von Neumann measurements are just as formal. (We
note that more general von Neumann measurements of A can be obtained
by replacing HvN with more general Hamiltonians; for example, H −

vN=
H0+HvN, where H0 is a self-adjoint operator on the system Hilbert space
which commutes with A, gives rise to a normal measurement of A, with
Ra=e−iTH0/(PHa

.Thus by proper extension of the von Neumann measure-
ments one may arrive at a framework of measurements completely equiva-
lent to that of strong formal measurements.)

3.5. Preparation Procedures

Before discussing further extensions of the association between exper-
iments and operators, we shall comment on an implicit assumption
apparently required for the measurement analysis to be relevant: that the
system upon which measurements are to be performed can be prepared in
any prescribed state k.

Firstly, we observe that the system can be prepared in a prescribed
state k by means of an appropriate standard measurement M performed
on the system when it is initially in an unknown state kŒ. We have to
choose M — {Ha, la, Ra} in such a way that Ra0kŒ=k, for some a0 and
all kŒ, i.e., that Ran(Ra0 )=span(k); then from reading the result la0 we
may infer that the system has collapsed to the state k. The simplest possi-
bility is for M to be an ideal measurement with at least a one-dimensional
subspace Ha0 that is spanned by k. Another possibility is to perform a
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(nonideal) standard measurement like that of the example at the end of
Section 3.2.3, which can be regarded as defining a preparation procedure
for the state e0.

Secondly, we wish to emphasize that the existence of preparation pro-
cedures is not as crucial for relevance as it may seem. If we had only statis-
tical knowledge about the initial state k, nothing would change in our
analysis of Bohmian experiments of Section 2, and in our conclusions con-
cerning the emergence of self-adjoint operators, except that the uncertainty
about the final configuration of the pointer would originate from both
quantum equilibrium and randomness in k. We shall elaborate upon this
later when we discuss Bohmian experiments for initial states described by a
density matrix.

3.6. Measurements of Commuting Families of Operators

As hinted in Section 2.7, the result of an experiment E might be more
complex than we have suggested until now in Section 3: it might be given
by the vector la — (l

(1)
a ,..., l

(m)
a ) corresponding to the orientations of m

pointers. For example, the apparatus itself may be a composite of m
devices with the possible results l (i)a corresponding to the final state of the
ith device. Nothing much will change in our discussion of measurements if
we now replace the numbers la with the vectors la — (l

(1)
a ,..., l

(m)
a ), since

the dimension of the value space was not very relevant. However E will
now be associated, not with a single self-adjoint operator, but with a
commuting family of such operators. In other words, we arrive at the
notion of an experiment E that is a measurement of a commuting family of
self-adjoint operators,22 namely the family

22 We recall some basic facts about commuting families of self-adjoint operators. (68, 71, 74) The
self-adjoint operators A1,..., Am form a commuting family if they are bounded and pair-
wise commute, or, more generally, if this is so for their spectral projections, i.e., if
[PAi(D), PAj(C)]=0 for all i, j=1,..., m and (Borel) sets D, C … R. A commuting family
A — (A1,..., Am) of self-adjoint operators is called complete if every self-adjoint operator C
that commutes with all members of the family can be expressed as C=g(A1, A2,...) for
some function g. The set of all such operators cannot be extended in any suitable sense (it is
closed in all relevant operator topologies). For any commuting family (A1,..., Am) of self-
adjoint operators there is a self-adjoint operator B and measurable functions fi such that
A i=fi(B). If the family is complete, then this operator has simple (i.e., nondegenerate)
spectrum.

A —C
a

laPHa
=1C

a

l (1)a PHa
,..., C

a

l (m)a PHa
2 — (A1,..., Am). (3.14)
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Then the notions of the various kinds of formal measurements—weak,
ideal, normal, standard, strong—extend straightforwardly to formal mea-
surements of commuting families of operators. In particular, for the
general notion of weak formal measurement given by (3.4), P becomes a
PVM on Rm, with associated operators A i=>Rm l (i)P(dl) [l=(l (1),..., l (m))
¥ Rm]. And just as for PVMs on R and self-adjoint operators, this associa-
tion in fact yields, by the spectral theorem, a one-to-one correspondence
between PVMs on Rm and commuting families of m self-adjoint operators.
The PVM corresponding to the commuting family (A1,..., Am) is in fact
simply the product PVM P=PA=PA1× · · · ×PAm given on product sets
by

PA(D1× · · · ×Dm)=PA1(D1) · · ·PAm(Dm), (3.15)

where PA1,..., PAm are the PVMs of A1,..., Am, and Di … R, with the asso-
ciated probability distributions on Rm given by the spectral measures for A

mAk(D)=Ok, PA(D) kP (3.16)

for any (Borel) set D … Rm.
In particular, for a PVM on Rm, corresponding to A=(A1,..., Am), the

i-marginal distribution, i.e., the distribution of the ith component l (i), is

mAk(R× · · ·R×Di×R× · · · ×R)=Ok, PAi(Di) kP=m
Ai
k (Di),

the spectral measure for A i. Thus, by focusing on the respective pointer
variables l (i), we may regard an experiment measuring (or a weak formal
measurement of ) A=(A1,..., Am) as providing an experiment measuring
(or a weak formal measurement of ) each A i, just as would be the case for a
genuine measurement of m quantities A1,..., Am. Note also the following:
If {Ha, la, Ra} is a strong formal measurement of A=(A1,..., Am), then
{Ha, l

(i)
a , Ra} is a strong formal measurement of A i, but if {Ha, la, Ra} is

an ideal, resp. normal, resp. standard, measurement of A, {Ha, l
(i)
a , Ra}

need not be ideal, resp. normal, resp. standard.
There is a crucial point to observe: the same operator may belong

to different commuting families. Consider, for example, a measurement of
A=(A1,..., Am) and one of B=(B1,..., Bm), where A1=B1 — C. Then
while both measurements provide a measurement of C, they could be
totally different: the operators A i and Bi for i ] 1 need not commute and
the PVMs of A and B, as well as any corresponding experiments EA and EB,
will be in general essentially different.
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To emphasize this point we shall recall a famous example, the EPRB
experiment: (14, 32) A pair of spin one-half particles, prepared in a spin-singlet
state

k=
1

`2
(k (+) é k (−)+k (−) é k (+)),

are moving freely in opposite directions. Measurements are made, say by
Stern–Gerlach magnets, on selected components of the spins of the two
particles. Let a, b, c be three different unit vectors in space, let s1 — s é I
and let s2 — I é s, where s=(sx, sy, sz) are the Pauli matrices. Then we
could measure the operator s1 ·a by measuring either of the commuting
families (s1 ·a, s2 ·b) and (s1 ·a, s2 · c). However these measurements are
different, both as weak and as strong measurements, and of course as
experiments. In Bohmian mechanics the result obtained at one place at any
given time will in fact depend upon the choice of the measurement simul-
taneously performed at the other place (i.e., on whether the spin of the
other particle is measured along b or along c). However, the statistics of
the results won’t be affected by the choice of measurement at the other
place because both choices yield measurements of the same operator and
thus their results must have the same statistical distribution.

3.7. Functions of Measurements

One of the most common experimental procedures is to recalibrate the
scale of an experiment E: if Z is the original result and f an appropriate
function, recalibration by f leads to f(Z) as the new result. Thus f(E)
has an obvious meaning. Moreover, if EW A according to (2.37) then
mf(Z)k =mZk p f

−1=mAk p f
−1, and

mAk p f
−1(dl)=Ok, PA(f−1(dl)) kP=Ok, Pf(A)(dl) kP

where the last equality follows from the very definition of

f(A)=F f(l) PA(dl)=F lPA(f−1(dl))

provided by the spectral theorem. Thus,

if mZk=m
A
k then mf(Z)k =mf(A)k , (3.17)

i.e.,

if EW A then f(E)W f(A). (3.18)
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The notion of function of a formal measurement has then an unequi-
vocal meaning: if M is a weak formal measurement defined by the PVM P
then f(M) is the weak formal measurement defined by the PVM P p f−1,
so that if M is a measurement of A then f(M) is a measurement of f(A);
for a strong formal measurement M={Ha, la, Ra} the self-evident
requirement that the recalibration not affect the wave function transitions
induced by M leads to f(M)={Ha, f(la), Ra}. Note that if M is a stan-
dard measurement, f(M) will in general not be standard (since in general
f can be many–to–one).

To highlight some subtleties of the notion of function of measurement
we shall discuss two examples: Suppose that M and MŒ are respectively
measurements of the commuting families A=(A1, A2) and B=(B1, B2),
with A1A2=B1B2=C. Let f: R2

Q R, f(l1, l2)=l1l2. Then both f(M)
and f(MŒ) are measurement of the same self-adjoint operator C. Never-
theless, as strong measurements or as experiments, they could be very dif-
ferent: if A2 and B2 do not commute they will be associated with different
families of spectral projections. (Even more simply, consider measurements
Mx and My of sx and sy and let f(l)=l2. Then f(Mx) and f(My) are
measurement of I—so that the result must be 1)—but the two strong
measurements, as well as the corresponding experiments, are completely
different.)

The second example is provided by measurements designed to deter-
mine whether the operator A=; laPHa

( the la’s are distinct) has values in
some given set D. This determination can be accomplished in at least two
different ways: Suppose that M is an ideal measurement of A and let 1D(l)
be the characteristic function of the set D. Then we could perform 1D(M),
that is, we measure A and see whether ‘‘A ¥ D.’’ But we could also perform
an ‘‘ideal determination of A ¥ D,’’ that is, an ideal measurement of
1D(A)=PA(D). Now, both measurements provide a ‘‘measurement of
A ¥ D’’ (i.e., of the operator 1D(A)), since in both cases the results 1 and 0
get assigned the same probabilities. However, as strong measurements, they
are different: when 1D(M) is performed, and the result 1 is obtained, k
undergoes the transition

kQ PHa
k

where a is the outcome with la ¥ D that actually occurs. On the other hand,
for an ideal measurement of 1D(A), the occurrence of the result 1 will gen-
erate the transition

kQ PA(D) k= C
la ¥ D

PHa
k.
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Note that in this case the state of the system is changed as little as possible.
For example, suppose that two eigenvalues, say la1 , la2 , belong to D and
k=ka1+ka2 ; then determination by performing 1D(M) will lead to either
ka1 or ka2 , while the ideal determination of A ¥ D will not change the state.

3.8. Measurements of Operators with Continuous Spectrum

We shall now reconsider the status of measurements of self-adjoint
operators with continuous spectrum. First of all, we remark that while on
the weak level such measurements arise very naturally—and, as already
stressed in Section 3.1, are indeed the first to appear in Bohmian mechanics
—there is no straightforward extension of the notion of strong measure-
ment to operators with continuous spectrum.

However, for given set of real numbers D, one may consider any
determination of A ¥ D, that is, any strong measurement of the spectral
projection PA(D). More generally, for any choice of a simple function

f(l)=C
N

i=1
ci 1D i (l),

one may consider the strong measurements of f(A). In particular, let {f(n)}
be a sequence of simple functions converging to the identity, so that
f (n)(A)Q A, and let Mn be measurements of f (n)(A). Then Mn are approx-
imate measurements of A.

Observe that the foregoing applies to operators with discrete spectrum,
as well as to operators with continuous spectrum. But note that while on
the weak level we always have

Mn QM,

where M is a (general) weak measurement of A (in the sense of (3.4)), if A
has continuous spectrum M will not exist as a strong measurement (in any
reasonable generalized sense, since this would imply the existence of a
bounded-operator-valued function Rl on the spectrum of A such that
Rg
lRl dl=PA(dl), which is clearly impossible). In other words, in this case

there can be no actual (generalized) strong measurement that the approx-
imate measurements Mn approximate—which is perfectly reasonable.

3.9. Sequential Measurements

Suppose that n measurements (with for each i, the l (i)a i distinct)

M1 — {H
(1)
a1
, l (1)a1 , R

(1)
a1
},...,Mn — {H

(n)
an
, l (n)an , R

(n)
an
}
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of operators (which need not commute)

A1=C
a1

l (1)a1 P
(1)
a1
,..., An=C

an

l (n)an P
(n)
an

are successively performed on our system at times 0 < t1 < t2 < · · · < tN.
Assume that the duration of any single measurement is small with respect
to the time differences ti−ti−1, so that the measurements can be regarded
as instantaneous. If in between two successive measurements the system’s
wave function changes unitarily with the operators Ut then, using obvious
notation,

Probk(A1=l
(1)
a1
,..., An=l

(n)
an
)=||R (n)

an
(tn) · · · R

(1)
a1
(t1) k||2, (3.19)

where R (i)
a i
(t)=U−1

t R
(i)
a i
Ut and k is the initial (t=0) wave function.

To understand how (3.19) comes about consider first the case where
n=2 and t2 % t1 % 0. According to standard probability rules, the proba-
bility of obtaining the results Z1=l

(1)
a1

for the first measurement and
Z2=l

(2)
a2

for the second one is the product23

23 This is so because of the conditional independence of the outcomes of two successive mea-
surements given the final conditional wave function for the first measurement. More
generally, the outcome of any measurement depends only on the wave function resulting
from the preceding one. For Bohmian experiments this independence is a direct consequence
of (2.10). One may wonder about the status of this independence for orthodox quantum
theory. We stress that while this issue might be problematical for orthodox quantum theory,
it is not a problem for Bohmian mechanics: the conditional independence of two successive
measurements is a consequence of the theory. (For more on this point, see ref. 25.) We also
would like to stress that this independence assumption is in fact crucial for orthodox
quantum theory. Without it, it is hard to see how one could ever be justified in invoking the
quantum formalism. Any measurement we may consider will follow many earlier measure-
ments.

Probk(Z2=l
(2)
a2
| Z1=l

(1)
a1
) ·Probk(Z1=l

(1)
a1
)

where the first term is the probability of obtaining l (2)a2 given that the
result of the first measurement is l (1)a1 . Since M1 then transforms the wave
function k to R (1)

a1
k, the (normalized) initial wave function for M2 is

R (1)
a1
k/||R (1)

a1
k||, this probability is equal to

||R (2)
a2
R (1)
a1
k||2

||R (1)
a1
k||2

.
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The second term, the probability of obtaining l (1)a1 , is of course ||R (1)
a1
k||2.

Thus

Probk(A(1)=l (1)a1 , A
(2)=l (2)a2 )=||R (2)

a2
R (1)
a1
k||2

in this case. Note that, in agreement with the analysis of discrete experi-
ments (see Eq. (2.20)), the probability of obtaining the results l (1)a1 and l (2)a2
turns out to be the square of the norm of the final system wave function
associated with these results. Now, for general times t1 and t2−t1 between
the preparation of k at t=0 and the performance of M1 and between M1

and M2, respectively, the final system wave function is R(2)
a2
Ut2 −t1R

(1)
a1
Ut1k=

R (2)
a2
Ut2U

−1
t1
R (1)
a1
Ut1k. But ||R (2)

a2
Ut2U

−1
t1
R (1)
a1
Ut1k||=||U−1

t2
R (2)
a2
Ut2U

−1
t1
R (1)
a1
Ut1k||,

and it is easy to see, just as for the simple case just considered, that the
square of the latter is the probability for the corresponding result, whence
(3.19) for n=2. Iterating, i.e., by induction, we arrive at (3.19) for general n.

We note that when the measurements M1,...Mn are ideal, the operators
R(i)
ai

are the orthogonal projections P(i)
ai

, and Eq. (3.19) becomes the standard
formula for the joint probabilities of the results of a sequence of measure-
ments of quantum observables, usually known as Wigner’s formula. (76)

It is important to observe that, even for ideal measurements, the joint
probabilities given by (3.19) are not in general a consistent family of joint
distributions: summation in (3.19) over the outcomes of the ith measure-
ment does not yield the joint probabilities for the results of the measure-
ments of the operators A1,..., A i−1, A i+1,..., An performed at the times
t1,..., ti−1, ti+1,..., tn. (By rewriting the right hand side of (3.19) as
Ok, R (1)

a1
(tn)g · · ·R

(n)
an
(tn)g R

(n)
an
(tn) R

(1)
a1
(t1) kP one easily sees that the ‘‘sum

rule’’ will be satisfied when i=n or if the operators R (i)
a i
(ti) commute. More

generally, the consistency is guaranteed by the ‘‘decoherence conditions’’ of
Griffiths, Omnès, Gell-Mann and Hartle, and Goldstein and Page. (35, 44, 46)

This failure of consistency means that the marginals of the joint
probabilities given by (3.19) are not themselves given by the corresponding
case of the formula. This should, however, come as no surprise: Since per-
forming the measurement Mi affects the state of the system, the outcome of
Mi+1 should in general depend on whether or not Mi has been performed.
Note that there is nothing particularly quantum in the fact that measure-
ments matter in this way: They matter even for genuine measurements
(unlike those we have been considering, in which nothing need be genuinely
measured), and even in classical physics, if the measurements are such that
they affect the state of the system.

The sequences of results la — (l
(1)
a1
,..., l(n)an ), the associated state trans-

formations Ra — R
(n)
an
Utn −tn−1R

(n−1)
an−1

· · · R(1)
a1
Ut1 , and the probabilities (3.19)

(i.e., given by pa=||Ra ||2) define what we shall call a sequential measurement
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of M1,...Mn, which we shall denote by Mn é · · · éM1. A sequential mea-
surement does not in general define a formal measurement, neither weak
nor strong, since Rg

aRa need not be a projection. This fact might seem dis-
turbing (see, e.g., ref. 21); we shall take up this issue in the next section.

3.10. Some Summarizing Remarks

The notion of formal measurement we have explored in this section is
at the heart of the quantum formalism. It embodies the two essential
ingredients of a quantum measurement: the self-adjoint operator A which
represents the measured observable and the set of state transformations Ra
associated with the measured results. The operator always carries the
information about the statistics of possible results. The state transforma-
tions prescribe how the state of the system changes when the measurement
is performed. For ideal measurement the latter information is also provided
by the operator, but in general additional structure (the Ra’s) is required.

There are some important morals to draw. The association between
measurements and operators is many-to-one: the same operator A can be
measured by many different measurements, for example ideal, or normal
but not ideal. Among the possible measurements of A, we must consider all
possible measurements of commuting families of operators that include A,
each of which may correspond to entirely different experimental setups.

A related fact: not all measurements are ideal measurements.24 No

24 In this regard we observe that the vague belief in a universal collapse rule is as old, almost,
as quantum mechanics. It is reflected in von Neumann’s formulation of quantum mecha-
nics, (74) based on two distinct dynamical laws: a unitary evolution between measurements,
and a nonunitary evolution when measurements are performed. However, von Neumann’s
original proposal (74) for the nonunitary evolution—that when a measurement of A=
;a laPHa

is performed upon a system in the state given by the density matrix W, the state of
the system after the measurement is represented by the density matrix

WŒ=C
a

C
b

Ofab, WfabP P[fab]

where, for each a, {fab} is a basis for Ha—does not treat the general measurement as ideal.
Moreover, this expression in general depends on the choice of the basis {fab}, and was thus
criticized by Lüders, (61) who proposed the transformation

WQWŒ=C
a

PHa
WPHa

,

as it gives a unique prescription. Note that for W=P[k], where P[k] is the projection onto
the initial pure state k, WŒ=;a paP[ka], where pa=|Ok, PHa

kP|2 and ka=PHa
k, corre-

sponding to an ideal measurement.

argument, physical or mathematical, suggests that ideal measurements
should be regarded as ‘‘more correct’’ than any other type. In particular,
the Wigner formula for the statistics of a sequence of ideal measurements is
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no more correct than the formula (3.19) for a sequence of more general
measurement. Granting a privileged status to ideal measurements amounts
to a drastic and arbitrary restriction on the quantum formalism qua mea-
surement formalism, since many (in fact most) real world measurements
would be left out.

In this regard we note that the arbitrary restriction to ideal measure-
ments affects the research program of ‘‘decoherent’’ or ‘‘consistent’’ his-
tories, (35, 46, 65) since Wigner’s formula for a sequence of ideal measurements is
unquestionably at its basis. (It should be emphasized however that the special
status granted to ideal measurements is probably not the main difficulty with
this approach. The no-hidden-variables theorems, which we shall discuss in
Section 7, show that the totality of different families of weakly decohering
histories, with their respective probability formulas, is genuinely inconsistent.
While such inconsistency is perfectly acceptable for a measurement for-
malism, it is hard to see how it can be tolerated as the basis of what is claimed
to be a fundamental theory. For more on this, see refs. 25 and 43.

4. THE EXTENDED QUANTUM FORMALISM

As indicated in Section 2.9, the textbook quantum formalism is merely
an idealization. As just stressed, not all real world measurements are ideal.
In fact, in the real world the projection postulate—that when the mea-
surement of an observable yields a specific value, the wave function of the
system is replaced by its projection onto the corresponding eigenspace—
is rarely obeyed. More importantly, a great many significant real-world
experiments are simply not at all associated with operators in the usual
way. Consider for example an electron with fairly general initial wave
function, and surround the electron with a ‘‘photographic’’ plate, away
from (the support of the wave function of ) the electron, but not too far
away. This setup measures the position of ‘‘escape’’ of the electron from
the region surrounded by the plate. Notice that since in general the time of
escape is random, it is not at all clear which operator should correspond to
the escape position—it should not be the Heisenberg position operator at a
specific time, and a Heisenberg position operator at a random time has no
meaning. In fact, there is presumably no such operator, so that for the
experiment just described the probabilities for the possible results cannot
be expressed in the form (2.37), and in fact are not given by the spectral
measure for any operator (on the Hilbert space of the system itself 25).

25 There is of course an operator on the Hilbert space of the composite system consisting of
the electron and the photographic plate that corresponds to the detected escape position,
namely the operator associated with the appropriate details of the state of the plate after the
detection.
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Time measurements, for example escape times or decay times, are
particularly embarrassing for the quantum formalism. This subject remains
mired in controversy, with various research groups proposing their own
favorite candidates for the ‘‘time operator’’ while paying little attention to
the proposals of the other groups. For an analysis of time measurements
within the framework of Bohmian mechanics, see ref. 20; in this regard see
also refs. 47, 57–59.

Because of these and other difficulties, it has been proposed that we
should go beyond operators-as-observables, to ‘‘generalized observables,’’
described by mathematical objects even more abstract than operators
(see, e.g., the books of Davies, (21) Holevo, (50) and Kraus (55)). The basis of
this generalization lies in the observation that, by the spectral theorem,
the concept of self-adjoint operator is completely equivalent to that of
(a normalized) projection-valued measure (PVM), an orthogonal-projec-
tion-valued additive set function, on the value space R. Orthogonal projec-
tions are among the simplest examples of positive operators, and a natural
generalization of a ‘‘quantum observable’’ is provided by a positive-opera-
tor-valued measure (POVM): a normalized, countably additive set function
O whose values are positive operators on a Hilbert space H. When
a POVM is sandwiched by a wave function it generates a probability
distribution

mOk : DW mOk (D) — Ok, O(D) kP (4.1)

in exactly the same manner as a PVM.

4.1. POVMs and Bohmian Experiments

From a fundamental perspective, it may seem that we would regard
this generalization, to positive-operator-valued measures, as a step in the
wrong direction, since it supplies us with a new, much larger class of fun-
damentally unneeded abstract mathematical entities far removed from the
basic ingredients of Bohmian mechanics. However from the perspective
of Bohmian phenomenology positive-operator-valued measures form an
extremely natural class of objects—indeed more natural than projection-
valued measures.

To see how this comes about observe that (2.18) defines a family of
bounded linear operators Ra by

P[Fa][U(k é F0)]=(Rak) é Fa, (4.2)
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in terms of which we may rewrite the probability (2.20) of obtaining the
result la (distinct) in a generic discrete experiment as

pa=||ka ||2=||Rak||2=Ok, Rg
aRakP. (4.3)

By the unitarity of the overall evolution of system and apparatus we have
that ;a ||ka ||2=;a Ok, R

g
aRakP=1 for all k ¥H, whence

C
a

Rg
aRa=I. (4.4)

The operators Oa — R
g
aRa are obviously positive, i.e.,

Ok, OakP \ 0 for all k ¥H (4.5)

and by (4.4) sum up to the identity,

C
a

Oa=I. (4.6)

Thus we may associate with a generic discrete experiment E—with no
assumptions about reproducibility or anything else, but merely unitarity—
a POVM

O(D)= C
la ¥ D

Oa — C
la ¥ D

Rg
aRa, (4.7)

in terms of which the statistics of the results can be expressed in a compact
way: the probability that the result of the experiment lies in a set D is given
by

C
la ¥ D

pa= C
la ¥ D

Ok, OakP=Ok, O(D) kP. (4.8)

Moreover, it follows from (2.18) and (4.2) that E generates state transfor-
mations

kQ ka=Rak. (4.9)

4.2. Formal Experiments

The association between experiments and POVMs can be extended to
a general experiment (2.34) in a straightforward way. In analogy with
(2.37) we shall say that the POVM O is associated with the experiment E
whenever the probability distribution (2.35) of the results of E is equal to
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the probability measure (4.1) generated by O, i.e.,26

26 Whenever (4.10) is satisfied we may say that the experiment E is a measurement of the gen-
eralized observable O. We shall however avoid this terminology in connection with general-
ized observables; even when it is standard (so that we use it), i.e., when O is a PVM and
thus equivalent to a self-adjoint operator, it is in fact improper.

EW O if and only if rZk=m
O
k . (4.10)

We may now proceed as in Section 3 and analyze on a formal level the
association (4.10) by introducing the notions of weak and strong formal
experiment as the obvious generalizations of (3.4) and (3.8):

Any positive-operator-valued measure O defines the weak
formal experiment E — O. Any set {la} of not necessarily
distinct real numbers (or vectors of real numbers) paired
with any collection {Ra} of bounded operators on H

such that ; Rg
aRa=I defines the strong formal experiment

E — {la, Ra} with associated POVM (4.7) and state
transformations (4.9). (4.11)

The notion of formal experiment is a genuine extension of that of
formal measurement, the latter being the special case in which O is a PVM
and Rg

aRa are the projections.
Formal experiments share with formal measurements many features.

This is so because all measure-theoretic properties of projection-valued
measures extend to positive-operator-valued measures. For example, just
as for PVMs, integration of real functions against positive-operator-valued
measure is a meaningful operation that generates self-adjoint operators:
for given real (and measurable) function f, the operator B=> f(l) O(dl)
is a self-adjoint operator defined, say, by its matrix elements Of, BkP=
> lmf, k(dl) for all f and k in H, where mf, k is the complex measure
mf, k(dl)=Of, O(dl) kP. (We ignore the difficulties that might arise if f is
not bounded.) In particular, with O is associated the self-adjoint operator

AO — F l O(dl). (4.12)

It is however important to observe that this association (unlike the
case of PVMs, for which the spectral theorem provides the inverse) is not
invertible, since the self-adjoint operator AO is always associated with the
PVM provided by the spectral theorem. Thus, unlike PVMs, POVMs are
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not equivalent to self-adjoint operators. In general, the operator AO will
carry information only about the mean value of the statistics of the results,

F lOk, O(dl) kP=Ok, AOkP,

while for the higher moments we should expect that

F lnOk, O(dl) kP ] Ok, An
OkP

unless O is a PVM.
What we have just described is an important difference between

general formal experiments and formal measurements. This and other dif-
ferences originate from the fact that a POVM is a much weaker notion
than a PVM. For example, a POVM O on Rm—like ordinary measures and
unlike PVMs—need not be a product measure: If O1,..., Om are the margi-
nals of O,

O1(D1)=O(D1×Rm−1),..., Om(Dm)=O(Rm−1×Dm),

the product POVM O1× · · · ×Om will be in general different from O. ( This
is trivial since any probability measure on Rm times the identity is a
POVM.)

Another important difference between the notion of POVM and that
of PVM is this: while the projections P(D) of a PVM, for different D’s,
commute, the operators O(D) of a generic POVM need not commute.
An illustration of how this may naturally arise is provided by sequential
measurements.

A sequential measurement (see Section 3.9) Mn é · · · éM1 is indeed a
very simple example of a formal experiment that in general is not a formal
measurement (see also Davies (21)). We have that

Mn é · · · éM1={la, Ra}

where

la — (l
(1)
a1
,..., l (n)an )

and

Ra — R
(n)
an
Utn − tn−1R

(n−1)
an−1

· · · R (1)
a1
·Ut1 .
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Note that since pa=||Rak||2, we have that

C
a

Rg
aRa=I,

which also follows directly using

C
aj

R (j)
aj

gR (j)
aj
=I, j=1,..., n.

Now, with Mn é · · · éM1 is associated the POVM

O(D)= C
la ¥ D

Rg
aRa.

Note that O(D) and O(DŒ) in general don’t commute since in general Ra
and Rb may fail to do so.

An interesting class of POVMs for which O(D) and O(DŒ) do commute
arises in association with the notion of an ‘‘approximate measurement’’ of a
self-adjoint operator: suppose that the result Z of a measurement M=PA

of a self-adjoint operator A is distorted by the addition of an independent
noise N with symmetric probability distribution g(l). Then the result
Z+N of the experiment, for initial system wave function k, is distributed
according to

DW F
D

F
R
g(l−lŒ)Ok, PA(dlŒ) kP dl,

which can be rewritten as

DW 7k, F
D

g(l−A) dl k8 .

Thus the result Z+N is governed by the POVM

O(D)=F
D

g(l−A) dl. (4.13)

The formal experiment defined by this POVM can be regarded as providing
an approximate measurement of A. For example, let

g(l)=
1

s`2p
e
− l

2

2s2. (4.14)

Then for sQ 0 the POVM (4.13) becomes the PVM of A and the experi-
ment becomes a measurement of A.
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Concerning the POVM (4.13) we wish to make two remarks. The first
is that the O(D)’s commute since they are all functions of A. The second is
that this POVM has a continuous density, i.e.,

O(dl)=o(l) dl where o(l)=g(l−A).

This is another difference between POVMs and PVMs: like ordinary mea-
sures and unlike PVMs, POVMs may have a continuous density. The
reason this is possible for POVMs is that, for a POVM O, unlike for a
PVM, given k ¥H, the vectors O(D) k and O(DŒ) k, for D and DŒ disjoint
and arbitrarily small, need not be orthogonal. Otherwise, no density o(dl)
could exist, because this would imply that there is a continuous family
{o(l) k} of orthogonal vectors in H.

Finally, we observe that unlike strong measurements, the notion of
strong formal experiment can be extended to POVM with continuous
spectrum (see Section 3.8). One may in fact define a strong experiment by
E={l, Rl}, where lW Rl is a continuous bounded-operator-valued func-
tion such that > Rg

lRl dl=I. Then the statistics for the results of such an
experiment is governed by the POVM O(dl) — Rg

lRl dl. For example, let

Rl=t (l−A) where t(l)=
1

`s 4
`2p

e
− l

2

4s2.

Then O(dl)=Rg
lRl dl is the POVM (4.13) with g given by (4.14). We

observe that the state transformations (cf. the definition (2.6) of the condi-
tional wave function)

kQ Rlk=
1

`s 4
`2p

e
− (l−A)2

4s2 k (4.15)

can be regarded as arising from a von Neumann interaction with Hamil-
tonian (3.12) (and cT=1) and ready state of the apparatus

F0(y)=
1

`s 4
`2p

e
− y2

4s2.

Experiments with state transformations (4.15), for large s, have been con-
sidered by Aharonov and coworkers (see, e.g., Aharonov, Anandan, and
Vaidman (1)) as providing ‘‘weak measurements’’ of operators. ( The effect
of the measurement on the state of the system is ‘‘small’’ if s is sufficiently
large.) This terminology notwithstanding, it is important to observe that
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such experiments are not measurements of A in the sense we have dis-
cussed here. They give information about the average value of A, since
> lOk, Rg

lRl kP dl=Ok, AkP, but presumably none about its higher
moments.

4.3. From Formal Experiments to Experiments

Just as with a formal measurement (see Section 3.3), with a formal
experiment E — {la, Ra}, we may associate a discrete experiment E. The
unitary map (2.18) of E will be given again by (3.10), i.e.,

U: k é F0 W C
a

(Rak) é Fa, (4.16)

but now Rg
aRa of course need not be projection. The unitarity of U follows

immediately from the orthonormality of the Fa using ; Rg
aRa=I. (Note

that with a weak formal experiment E — O={Oa} we may associate many
inequivalent discrete experiments, defined by (4.16) with operators Ra —
Ua `Oa, for any choice of unitary operators Ua.)

We shall now discuss a concrete example of a discrete experiment
defined by a formal experiment which will allow us to make some more
further comments on the issue of reproducibility discussed in Section 2.8.

Let {..., e−1, e0, e1,...} be an orthonormal basis in the system Hilbert
space H, let P− , P0, P+ be the orthogonal projections onto the subspaces
H2− , H0, H2+ spanned by {e}a < 0, {e0}, {e}a > 0 respectively, and let V+, V− be
the right and left shift operators,

V+ea=ea+1, V−ea=ea−1.

Consider the strong formal experiment E with the two possible results
l±=±1 and associated state transformations

R ±1=V± 1 P±+
1

`2
P0 2 . (4.17)

Then the unitary U of the corresponding discrete experiment E is given by

U: k é F0 Q R−k é F−+R+k é F+,

where F0 is the ready state of the apparatus and F± are the apparatus
states associated with the results ±1. If we now consider the action of U on
the basis vectors ea,
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U(ea é F0)=ea+1 é F+ for a > 0

U(ea é F0)=ea−1 é F− for a < 0

U(e0 é F0)=
1

`2
(e1 é F++e−1 é F−),

we see immediately that

U(H2± é F0) …H2± é F±1.

Thus (2.24) is satisfied and E is a reproducible experiment. Note however
that the POVM O={O−1, O+1} associated with (4.17),

O±1=Rg
±1R ±1=P±+

1
2 P0,

is not a PVM since the positive operators O±1 are not projections, i.e.,
O2
±1 ] O±1. Thus E is not a measurement of any self-adjoint operator,

which shows that without the assumption of the finite dimensionality of the
subspaces Ha

6 a reproducible discrete experiment need not be a measure-
ment of a self-adjoint operator.

4.4. Measure-Valued Quadratic Maps

We conclude this section with a remark about POVMs. Via (4.1) every
POVM O defines a ‘‘normalized quadratic map’’ from H to measures on
some space (the value-space for the POVM). Moreover, every such map
comes from a POVM in this way. Thus the two notions are equivalent:

(4.1) defines a canonical one-to-one correspondence between
POVMs and normalized measure-valued quadratic maps on H. (4.18)

To say that a measure-valued map on H

kW mk (4.19)

is quadratic means that

mk=B(k, k) (4.20)
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is the diagonal part of a sesquilinear map B, from H×H to the complex
measures on some value space L. If B(k, k) is a probability measure when-
ever ||k||=1, we say that the map is normalized.27

27 A sesquilinear map B(f, k) is one that is linear in the second slot and conjugate linear in the
first:

B(f, ak1+bk2)=aB(f, k1)+bB(f, k2)

B(af1+bf2, k)=āB(f1, k)+b̄B(f2, k).

Clearly any such normalized B can be chosen to be conjugate symmetric, B(k, f)=B(f, k),
without affecting its diagonal, and it follows from polarization that any such B must in fact
be conjugate symmetric.

Proposition (4.18) is a consequences of the following considerations:
For a given POVM O the map kW mOk , where mOk (D) — Ok, O(D) kP, is
manifestly quadratic, with B(f, k)=Of, O( · ) kP, and it is obviously nor-
malized. Conversely, let kW mk be a normalized measure-valued quadratic
map, corresponding to some B, and write BD(f, k)=B(f, k)[D] for the
complex measure B at the Borel set D. By the Schwartz inequality, applied
to the positive form BD(f, k), we have that |BD(f, k)| [ ||k|| ||f||. Thus,
using Riesz’s lemma, (70) there is a unique bounded operator O(D) on H
such that

BD(f, k)=Of, O(D) kP.

Moreover, O(D), like BD, is countably additive in D, and since B(k, k) is a
(positive) measure, O is a positive-operator-valued measure, normalized
because B is.

A simple example of a normalized measure-valued quadratic map is

YW rY(dq)=|Y|2 dq, (4.21)

whose associated POVM is the PVM P Q̂ for the position (configuration)
operator

Q̂Y(q)=qY(q). (4.22)

Note also that if the quadratic map mk corresponds to the POVM O, then,
for any unitary U, the composite map kW m

Uk
corresponds to the POVM

UgOU, since OUk, O(D) UkP=Ok, UgO(D) UkP. In particular for the map
(4.21) and U=UT, the composite map corresponds to the PVM P Q̂T, with
Q̂T=UgQ̂U, the Heisenberg position (configuration) at time T, since
Ug

TP
Q̂UT=PUg

TQ̂UT.
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5. THE GENERAL EMERGENCE OF OPERATORS

For Bohmian mechanics POVMs emerge naturally, not for discrete
experiments, but for a general experiment (2.34). To see how this comes
about consider the probability measure (2.35) giving the probability distri-
bution of the result Z=F(QT) of the experiment, where QT is the final
configuration of system and apparatus and F is the calibration function
expressing the numerical result, for example the orientation G of a pointer.
Then the map

kW rZk=rYT p F
−1, (5.1)

from the initial wave function of the system to the probability distribution
of the result, is quadratic since it arises from the sequence of maps

kWY=k é F0 WYT=U(k é F0)W rYT (dq)

=Yg
TYT dqW r

Z
k=rYT p F

−1, (5.2)

where the middle map, to the quantum equilibrium distribution, is
obviously quadratic, while all the other maps are linear, all but the second
trivially so. Now, by (4.18), the notion of such a quadratic map (5.1) is
completely equivalent to that of a POVM on the system Hilbert space H.
( The sesquilinear map B associated with (5.2) is B(k1, k2)=
Yg

1TY2T dq p F−1, where Yi T=U(ki é F0).)
Thus the emergence and role of POVMs as generalized observables

in Bohmian mechanics is merely an expression of the sesquilinearity of
quantum equilibrium together with the linearity of the Schrödinger evolu-
tion. Thus the fact that with every experiment is associated a POVM,
which forms a compact expression of the statistics for the possible results,
is a near mathematical triviality. It is therefore rather dubious that the
occurrence of POVMs—the simplest case of which is that of PVMs—as
observables can be regarded as suggesting any deep truths about reality or
about epistemology.

An explicit formula for the POVM defined by the quadratic map (5.1)
follows immediately from (5.2):

rZk (dl)=Ok é F0, UgP Q̂(F−1(dl)) Uk é F0P

=Ok é F0, P0UgP Q̂(F−1(dl)) UP0k é F0P

where P Q̂ is the PVM for the position (configuration) operator (4.22) and
P0 is the projection onto H é F0, whence

O(dl)=1−1F0P0 U
gP Q̂(F−1(dl)) UP01F0 , (5.3)
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where 1F0k=k é F0 is the natural identification of H with H é F0. This
is the obvious POVM reflecting the essential structure of the experiment.28

28 This POVM can also be written as

O(dl)=trA[P0 UgP Q̂(F−1(dl)) U], (5.4)

where trA is the partial trace over the apparatus variables. The partial trace is a map
trA: WW trA(W), from trace class operators on the Hilbert space HS éHA to trace class
operators on HS, uniquely defined by trS(trA(W) B)=trS+A(WB é I), where trS+A and trS
are the usual (scalar-valued) traces of operators on HS éHA and HS, respectively. For a
trace class operator B on L2(dx) é L2(dy) with kernel B(x, y, xŒ, yŒ) we have trA(B)(x, xŒ)=
> B(x, y, xŒ, y) dy. In (5.4) trA is applied to operators that need not be trace class—nor need
the operator on the left be trace class—since, e.g., O(L)=I. The formula nonetheless makes
sense.

Note that the POVM (5.3) is unitarily equivalent to

P0PF(Q̂T)(dl) P0 (5.5)

where Q̂T is the Heisenberg configuration of system and apparatus at time T.
This POVM, acting on the subspace H é F0, is the projection to that sub-
space of a PVM, the spectral projections for F(Q̂T). Naimark has shown
(see, e.g., ref. 21) that every POVM is equivalent to one that arises in this
way, as the orthogonal projection of a PVM to a subspace.29

29 If O(dl) is a POVM on S acting on H, then the Hilbert space on which the corresponding
PVM acts is the natural Hilbert space associated with the data at hand, namely
L2(S,H, O(dl)), the space of H-valued functions k(l) on S, with inner product given by
> Ok(l), O(dl) f(l)P. (If this is not, in fact, positive definite, then the quotient with its
kernel should be taken—k(l) should, in other words, be understood as the appropriate
equivalence class.) Then O(dl) is equivalent to PE(dl) P, where E(D)=1̂D(l), multiplica-
tion by 1D(l), and P is the orthogonal projection onto the subspace of constant H-valued
functions k(l)=k.

We shall now illustrate the association of POVMs with experiments by
considering some special cases of (5.2).

5.1. ‘‘No Interaction’’ Experiments

Let U=US é UA in (5.2) (hereafter the indices ‘‘S ’’ and ‘‘A ’’ shall
refer, respectively, to system and apparatus). Then for F(x, y)=y the
measure-valued quadratic map defined by (5.2) is

kW c(y) ||k||2 dy

where c(y)=|UAF0 |2 (y), with POVM O1(dy)=c(y) dy IS, while for
F(q)=q=(x, y) the map is

kW c(y) |USk|2 (x) dq
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with corresponding POVM O2(dq)=c(y) Ug
SP

X̂(dx) US dy. Neither O1 nor
O2 is a PVM. However, if F is independent of y, F(x, y)=F(x), then the
apparatus can be ignored in (5.2) or (5.3) and O=Ug

SP
X̂US p F−1, i.e.,

O(dl)=Ug
SP

X̂(F−1(dl)) US,

which is manifestly a PVM—in fact corresponding to F(X̂T), where X̂T is
the Heisenberg configuration of the system at the end of the experiment.

This case is somewhat degenerate: with no interaction between system
and apparatus it hardly seems anything like a measurement. However, it
does illustrate that it is ‘‘true’’ POVMs (i.e., those that aren’t PVMs) that
typically get associated with experiments—i.e., unless some special condi-
tions hold (here that F=F(x)).

5.2. ‘‘No X ’’ Experiments

The map (5.2) is well defined even when the system (the x-system) has
no translational degrees of freedom, so that there is no x (or X). This will
be the case, for example, when the system Hilbert space HS corresponds to
the spin degrees of freedom. Then HS=Cn is finite dimensional.

In such cases, the calibration F of course is a function of y alone, since
there is no x. For F=y the measure-valued quadratic map defined by (5.2)
is

kW |[U(k é F0)](y)|2 dy, (5.6)

where | · · · | denotes the norm in Cn.
This case is physically more interesting than the previous one, though

it might appear rather puzzling since until now our measured systems have
always involved configurations. After all, without configurations there is
no Bohmian mechanics! However, what is relevant from a Bohmian per-
spective is that the composite of system and apparatus be governed by
Bohmian mechanics, and this may well be the case if the apparatus has
configurational degrees of freedom, even if what is called the system
doesn’t. Moreover, this case provides the prototype of many real-world
experiments, e.g., spin measurements.

For the measurement of a spin component of a spin-1/2 particle—
recall the description of the Stern–Gerlach experiment given in Section 2.5
—we let HS=C2, the spin space, with ‘‘apparatus’’ configuration y=x,
the position of the particle, and with suitable calibration F(x). (For a real
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world experiment there would also have to be a genuine apparatus—
a detector—that measures where the particle actually is at the end of the
experiment, but this would not in any way affect our analysis. We shall
elaborate upon this below.) The unitary U of the experiment is the evolu-
tion operator up to time T generated by the Pauli Hamiltonian (2.12),
which under the assumption (2.14) becomes

H=−
(
2

2m
N2−(b+az) sz. (5.7)

Moreover, as in Section 2.5, we shall assume that the initial particle
wave function has the form F0(x)=F0(z) f(x, y).30 Then for F(x)=z the

30 We abuse notation here in using the notation y=x=(x, y, z). The y on the right should of
course not be confused with the one on the left.

quadratic map (5.2) is

kW (|Ok+, kP|2 |F (+)
T (z)|

2+|Ok−, kP|2 |F (−)
T (z)|

2) dz

=Ok, |k+POk+| |F (+)
T (z)|

2+|k−POk−| |F (−)
T (z)|

2 kP dz

with POVM

O(dz)=R |F
(+)
T (z)|

2 0

0 |F (−)
T (z)|

2
S dz, (5.8)

where k ± are the eigenvectors (2.13) of sz and F (±)
T are the solutions of

(2.15) computed at t=T, for initial conditions F (±)
0 =F0(z).

Consider now the appropriate calibration for the Stern–Gerlach
experiment, namely the function

F(x)=˛+1 if z > 0,

−1 if z < 0
(5.9)

which assigns to the outcomes of the experiment the desired numerical
results: if the particle goes up in the z-direction the spin is +1, while if the
particle goes down the spin is −1. The corresponding POVM OT is defined
by

OT(+1)=R
p+T 0

0 p−T
S OT(−1)=R

1−p+T 0

0 1−p−T
S
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where

p+T=F
.

0
|F (+)

T |
2 (z) dz, p−T=F

.

0
|F (−)

T |
2 (z) dz.

It should be noted that OT is not a PVM. However, as indicated in
Section 2.5, as TQ., p+T Q 1 and p−T Q 0, and the POVM OT becomes the
PVM of the operator sz, i.e., OT Q Psz, defined by

P(+1)=R1 0

0 0
S P(−1)=R0 0

0 1
S (5.10)

and the experiment becomes a measurement of the operator sz.

5.3. ‘‘No Y ’’ Experiments

Suppose now that the ‘‘apparatus’’ involves no translational degrees of
freedom, i.e., that there is no y (or Y). For example, suppose the apparatus
Hilbert space HA corresponds to certain spin degrees of freedom, with
HA=Cn finite dimensional. Then, of course, F=F(x).

This case illustrates what measurements are not. If the apparatus has
no configurational degrees of freedom, then neither in Bohmian mechanics
nor in orthodox quantum mechanics is it a bona fide apparatus: Whatever
virtues such an apparatus might otherwise have, it certainly can’t generate
any directly observable results (at least not when the system itself is micro-
scopic). According to Bohr (ref. 17, pp. 73 and 90): ‘‘Every atomic phe-
nomenon is closed in the sense that its observation is based on registrations
obtained by means of suitable amplification devices with irreversible func-
tioning such as, for example, permanent marks on the photographic plate’’
and ‘‘the quantum-mechanical formalism permits well-defined applications
only to such closed phenomena.’’ To stress this point, discussing particle
detection Bell has said: (7) ‘‘Let us suppose that a discharged counter pops
up a flag sayings ‘Yes’ just to emphasize that it is a macroscopically differ-
ent thing from an undischarged counter, in a very different region of con-
figuration space.’’

Experiments based on certain micro-apparatuses, e.g., ‘‘one-bit detec-
tors,’’ (73) provide a nice example of ‘‘No Y’’ experiments. We may think of
a one-bit detector as a spin-1/2-like system (e.g., a two-level atom), with
‘‘down’’ state F0 ( the ready state) and ‘‘up’’ state F1 and which is such that
its configurational degrees of freedom can be ignored. Suppose that this
‘‘spin-system,’’ in its ‘‘down’’ state, is placed in a small spatial region D1
and consider a particle whose wave function has been prepared in such a
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way that at t=0 it has the form k=k1+k2, where k1 is supported by D1
and k2 by D2 disjoint from D1. Assume that the particle interacts locally
with the spin-system, in the sense that were k=k1 the ‘‘spin’’ would flip to
the ‘‘up’’ state, while were k=k2 it would remain in its ‘‘down’’ state, and
that the interaction time is negligibly small, so that other contributions to
the Hamiltonian can be ignored. Then the initial state k é F0 undergoes
the unitary transformation

U: k é F0 QY=k1 é F1+k2 é F0. (5.11)

We may now ask whether U defines an experiment genuinely measur-
ing whether the particle is in D1 or D2. The answer of course is no (since in
this experiment there is no apparatus property at all with which the posi-
tion of the particle could be correlated) unless the experiment is (quickly)
completed by a measurement of the ‘‘spin’’ by means of another (macro-
scopic) apparatus. In other words, we may conclude that the particle is in
D1 only if the spin-system in effect pops up a flag saying ‘‘up.’’

5.4. ‘‘No Y no F ’’ Experiments

Suppose there is no apparatus at all: no apparatus configuration y nor
Hilbert space HA, or, what amounts to the same thing, HA=C. For cali-
bration F=x the measure-valued quadratic map defined by (5.2) is

kW |Uk(x)|2,

with POVM UgPX̂U, while the POVM for general calibration F(x) is

O(dl)=UgP X̂(F−1(dl)) U. (5.12)

O is a PVM, as mentioned in Section 5.1, corresponding to the operator
UgF(X̂) U=F(X̂T), where X̂T is the Heisenberg position (configuration)
operator at time T.

It is important to observe that even though these experiments suffer
from the defect that no correlation is established between the system and
an apparatus, this can easily be remedied—by adding a final detection
measurement that measures the final actual configuration XT—without in
any way affecting the essential formal structure of the experiment. For
these experiments the apparatus thus does not introduce any additional
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randomness, but merely reflects what was already present in XT. All ran-
domness in the final result

Z=F(XT) (5.13)

arises from randomness in the initial configuration of the system.31

31 Though passive, the apparatus here plays an important role in recording the final configu-
ration of the system. However, for experiments involving detections at different times, the
apparatus plays an active role: Consider such an experiment, with detections at times
t1,..., tn, and final result Z=F(Xt1

,..., Xtn
). Though the apparatus introduces no extra ran-

domness, it plays an essential role by changing the wave function of the system at the times
t1,..., tn and thus changing the evolution of its configuration. These changes are reflected in
the POVM structure that governs the statistical distribution of Z for such experiments (see
Section 3.9).

For F=x and U=I the quadratic map is kW |k(x)|2 with PVM P X̂,
so that this (trivial) experiment corresponds to the simplest and most basic
operator of quantum mechanics: the position operator. How other basic
operators arise from experiments is what we are going to discuss next.

5.5. The Basic Operators of Quantum Mechanics

According to Bohmian mechanics, a particle whose wave function is
real (up to a global phase), for example an electron in the ground state
of an atom, has vanishing velocity, even though the quantum formalism
assigns a nontrivial probability distribution to its momentum. It might thus
seem that we are faced with a conflict between the predictions of Bohmian
mechanics and those of the quantum formalism. This, however, is not so.
The quantum predictions about momentum concern the results of an
experiment that happens to be called a momentum measurement and a
conflict with Bohmian mechanics with regard to momentum must reflect
disagreement about the results of such an experiment.

One may base such an experiment on free motion followed by a final
measurement of position.32 Consider a particle of mass m whose wave

32 The emergence of the momentum operator in such so-called time-of-flight measurements
was discussed by Bohm in his 1952 article. (15) A similar derivation of the momentum opera-
tor can be found in Feynman and Hibbs. (34)

function at t=0 is k=k(x). Suppose no forces are present, that is, that all
the potentials acting on the particle are turned off, and let the particle
evolve freely. Then we measure the position XT that it has reached at the
time t=T. It is natural to regard VT=XT/T and PT=mXT/T as provid-
ing, for large T, approximations to the asymptotic velocity and momentum
of the particle. It turns out that the probability distribution of PT, in
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the limit TQ., is exactly what quantum mechanics prescribes for the
momentum, namely |k̃(p)|2, where

k̃(p)=(Fk)(p)=
1

`(2p()3
F e−

i
(
p ·x
k(x) dx

is the Fourier transform of k.
This result can be easily understood: Observe that |kT(x)|2 dx, the prob-

ability distribution of XT, is the spectral measure m X̂T
k (dx)=Ok, P X̂T(dx) kP

of X̂T=Ug
TX̂UT, the (Heisenberg) position operator at time t=T; here Ut

is the free evolution operator and X̂ is, as usual, the position operator at
time t=0. By elementary quantum mechanics (specifically, the Heisenberg
equations of motion), X̂T=

1
m P̂T+X̂, where P̂ —−i(N is the momentum

operator. Thus as TQ. the operator mX̂T/T converges to the momen-
tum operator P̂, since X̂/T is O(1/T), and the distribution of the random
variable PT accordingly converges to the spectral measure of P̂, given by
|k̃(p)|2.33

33 This formal argument can be turned into a rigorous proof by considering the limit of the
characteristic function of PT, namely of the function fT(l)=> e il ·p rT(dp), where rT is the
distribution of mXT/T: fT(l)=Ok, exp(il ·mX̂T/T) kP, and using the dominated conver-
gence theorem (70) this converges as TQ. to f(l)=Ok, exp(il · P̂) kP, implying the desired
result. The same result can also be obtained using the well known asymptotic formula
(see, e.g., ref. 69) for the solution of the free Schrödinger equation with initial condition
k=k(x),

kT(x) ’ 1 miT
2
3
2

e
i mx2

2(T k̃ 1mx
T
2 for TQ..

The momentum operator arises from a (TQ.) limit of ‘‘no Y no F’’
single-particle experiments, each experiment being defined by the unitary
operator UT ( the free particle evolution operator up to time T) and cali-
bration FT(x)=mx/T. Other standard quantum-mechanical operators
emerge in a similar manner, i.e., from a TQ. limit of appropriate single-
particle experiments.

This is the case, for example, for the spin operator sz. As in Sec-
tion 5.2, consider the evolution operator UT generated by Hamiltonian
(5.7), but instead of (5.9), consider the calibration FT(x)=2mz/aT2. This
calibration is suggested by (2.16), as well as by the explicit form of the
z-component of the position operator at time t=T,

ẐT=Ug
TẐUT=Ẑ+

P̂z
m
T+

a
2m
szT2, (5.14)
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which follows from the Heisenberg equations

m
d2Ẑt
dt2

=asz,
dẐt
dt
:
t=0
=P̂z —−i(

“

“z
, Ẑ0=Ẑ.

Then, for initial state Y=k é F0 with suitable F0, where k=ak (+)+bk (−),
the distribution of the random variable

SzT=FT(XT)=
2mZT
aT2

converges as TQ. to the spectral measure of sz, with values +1 and −1
occurring with probabilities |a|2 and |b|2, respectively.34 This is so, just as

34 For the Hamiltonian (5.7) no assumption on the initial state Y is required here; however
(5.7) will be a reasonably good approximation only when Y has a suitable form, expressing
in particular that the particle is appropriately moving towards the magnet.

with the momentum, because as TQ. the operator 2mẐT
aT2

converges to sz.
We remark that we’ve made use above of the fact that simple algebraic

manipulations on the level of random variables correspond automatically
to the same manipulations for the associated operators. More precisely,
suppose that

ZW A (5.15)

in the sense (of (2.37)) that the distribution of the random variable Z is
given by the spectral measure for the self-adjoint operator A. Then it
follows from (3.17) that

f(Z)Q f(A) (5.16)

for any (Borel) function f. For example, since XT W X̂T, mXT/TW

mX̂T/T, and since ZT Q ẐT, 2mZT
aT2

Q
2mẐT
aT2

. Similarly, if a random variable
PW P̂, then P2/(2m)WH0=P̂2/(2m). This is rather trivial, but it is not
as trivial as the failure even to distinguish Z and Ẑ would make it seem.

5.6. From Positive-Operator-Valued Measures to Experiments

We wish here to point out that to a very considerable extent the asso-
ciation EW O(dl) of experiments with POVMs is onto. It is more or less
the case that every POVM arises from an experiment.

We have in mind two distinct remarks. First of all, it was pointed out
in the first paragraph of Section 4.3 that every discrete POVM Oa (weak
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formal experiment) arises from some discrete experiment E. Thus, for every
POVM O(dl) there is a sequence E (n) of discrete experiments for which the
corresponding POVMs O (n) converge to O.

The second point we wish to make is that to the extent that every
PVM arises from an experiment E={F0, U, F}, so too does every POVM.
This is based on the fact, mentioned at the end of the introduction to Sec-
tion 5, that every POVM O(dl) can be regarded as arising from the
projection of a PVM E(dl), acting on H (1), onto the subspace H …H (1).
We may assume without loss of generality that both H and H (1) ıH are
infinite dimensional (by some otherwise irrelevant enlargements if neces-
sary). Thus we can identify H (1) with H éHapparatus(1) and the subspace
with H é F (1)

0 , for any choice of F (1)
0 . Suppose now that there is an exper-

iment E (1)={F (2)
0 , U, F} that measures the PVM E (i.e., that measures the

observable A=> lE(dl)) where F (2)
0 ¥Happaratus(2), U acts on H éHapparatus

where Happaratus=Happaratus(1) éHapparatus(2) and F is a function of the config-
uration of the composite of the 3 systems: system, apparatus(1) and
apparatus(2). Then, with F0=F

(1)
0 é F (2)

0 , E={F0, U, F} is associated with
the POVM O.

5.7. Invariance under Trivial Extension

Suppose we change an experiment E to EŒ by regarding its x-system as
containing more of the universe that the x-system for E, without in any
way altering what is physically done in the experiment and how the result is
specified. One would imagine that EŒ would be equivalent to E. This would,
in fact, be trivially the case classically, as it would if E were a genuine
measurement, in which case EŒ would obviously measure the same thing
as E. This remains true for the more formal notion of measurement under
consideration here. The only source of nontriviality in arriving at this
conclusion is the fact that with EŒ we have to deal with a different, larger
class of initial wave functions.

We will say that EŒ is a trivial extension of E if the only relevant dif-
ference between E and EŒ is that the x-system for EŒ has generic configura-
tion xŒ=(x, x̂), whereas the x-system for E has generic configuration x.
In particular, the unitary operator UŒ associated with EŒ has the form
UŒ=U é Û, where U is the unitary associated with E, implementing the
interaction of the x-system and the apparatus, while Û is a unitary operator
describing the independent evolution of the x̂-system, and the calibration F
for EŒ is the same as for E. ( Thus F does not depend upon x̂.)

The association of experiments with (generalized) observables (POVMs)
is invariant under trivial extension: if EW O in the sense of (4.10) and EŒ is
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a trivial extension of E, then EŒW O é I, where I is the identity on the
Hilbert space of the x̂-system.

To see this note that if EW O then the sesquilinear map B arising
from (5.2) for EŒ is of the form

B(k1 é k̂1, k2 é k̂2)=Ok1, Ok2POk̂1, k̂2P

on product wave functions kŒ=k é k̂, which easily follows from the form
of UŒ and the fact that F doesn’t depend upon x̂, so that the x̂-degrees of
freedom can be integrated out. Thus the POVM OŒ for EŒ agrees with Oé I
on product wave functions, and since such wave functions span the Hilbert
space for the (x, x̂)-system, we have that OŒ=O é I. Thus EŒW O é I.

In other words, if E is a measurement of O, then EŒ is a measurement
of Oé I. In particular, if E is a measurement of the self-adjoint operator A,
then EŒ is a measurement of A é I. This result is not quite so trivial as it
would be were it concerned with genuine measurements, rather than with
the more formal notion under consideration here.

Now suppose that EŒ is a trivial extension of a discrete experiment E,
with state transformations given by Ra. Then the state transformations for
EŒ are given by R −a=Ra é Û. This is so because R −a must agree with Ra é Û
on product wave functions kŒ=k é k̂, and these span the Hilbert space of
the (x, x̂)-system.

5.8. POVMs and the Positions of Photons and Dirac Electrons

We have indicated how POVMs emerge naturally in association with
Bohmian experiments. We wish here to indicate a somewhat different role
for a POVM: to describe the probability distribution of the actual (as
opposed to measured35) position. The probability distribution of the posi-

35 The accurate measurement of the position of a Dirac electron is presumably impossible.

tion of a Dirac electron in the state k is k+k. This is given by a PVM
E(dx) on the one-particle Hilbert space H spanned by positive and nega-
tive energy electron wave functions. However the physical one-particle
Hilbert-space H+ consists solely of positive energy states, and this is not
invariant under the projections E. Nonetheless the probability distribution
of the position of the electron is given by the POVM P+E(dx) P+ acting
on H+, where P+ is the orthogonal projection onto H+. Similarly, con-
straints on the photon wave function require the use of POVMs for the
localization of photons. (3, 54) 36

36 For example, on the one-photon level, both the proposal Y=E+iB (where E and B are the
electric and the magnetic free fields), (12) and the proposal Y=A (where A is the vector
potential in the Coulomb gauge), (3) require the constraint N ·Y=0.
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6. DENSITY MATRICES

The notion of a density matrix, a positive (trace class) operator with
unit trace on the Hilbert space of a system, is often regarded as providing
the most general characterization of a quantum state of that system.
According to the quantum formalism, when a system is described by the
density matrix W, the expected value of an observable A is given by
tr(WA). If A has PVM O, and more generally for any POVM O, the
probability that the (generalized) observable O has value in D is given by

Prob(O ¥ D)=tr(WO(D)). (6.1)

A density matrix that is a one-dimensional projection, i.e., of the form
|kPOk| where k is a unit vector in the Hilbert space of the system, describes
a pure state (namely, k), and a general density matrix can be decomposed
into a mixture of pure states kk,

W=C
k
pk |kkPOkk | where C

k
pk=1. (6.2)

Naively, one might regard pk as the probability that the system is in
the state kk. This interpretation is, however, untenable, for a variety of
reasons. First of all, the decomposition (6.2) is not unique. A density
matrix W that does not describe a pure state can be decomposed into pure
states in a variety of different ways.

It is always possible to decompose a density matrix W in such a way
that its components kk are orthonormal. Such a decomposition will be
unique except when W is degenerate, i.e., when some pk’s coincide. For
example, if p1=p2 we may replace k1 and k2 by any other orthonormal
pair of vectors in the subspace spanned by k1 and k2. And even if W were
nondegenerate, it need not be the case that the system is in one of the states
kk with probability pk, because for any decomposition (6.2), regardless of
whether the kk are orthogonal, if the wave function of the system were kk
with probability pk, this situation would be described by the density matrixW.

Thus a general density matrix carries no information—not even statis-
tical information—about the actual wave function of the system. More-
over, a density matrix can describe a system that has no wave function at
all! This happens when the system is a subsystem of a larger system whose
wave function is entangled, i.e., does not properly factorize (in this case one
usually speaks of the reduced density matrix of the subsystem).

This impossibility of interpreting density matrices as real mixtures of
pure states has been regarded by many authors (e.g., von Neumann (74) and
Landau (56)) as a further indication that quantum randomness is inexplicable
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within the realm of classical logic and probability. However, from the point
of view of Bohmian mechanics, there is nothing mysterious about density
matrices. Indeed, their role and status within the quantum formalism can
be understood very easily in terms of the general framework of experiments
of Section 5. (It can, we believe, be reasonably argued that even from the
perspective of orthodox quantum theory, density matrices can be under-
stood in a straightforward way.)

6.1. Density Matrices and Bohmian Experiments

Consider a general experiment EW O (see Eq. (4.10)) and suppose
that the initial wave function of the system is random with probability dis-
tribution p(dk) (on the set of unit vectors in H). Then nothing will change
in the general argument of Section 5 except that now rZk in (4.10) and (5.2)
should be interpreted as the conditional probability given k. It follows then
from (6.1), using the fact that Ok, O(D) kP=tr(|kPOk| O(D)), that the
probability that the result of E lies in D is given by

F p(dk) Ok, O(D) kP=tr 1F p(dk) |kPOk| O(D)2=tr(WO(D)) (6.3)

where37

37 Note that since p is a probability measure on the unit sphere in H, W is a positive trace
class operator with unit trace.

W — F p(dk) |kPOk| (6.4)

is the ensemble density matrix arising from a random wave function with
(ensemble) distribution p.

Now suppose that instead of having a random wave function, our
system has no wave function at all because it is entangled with another
system. Then there is still an object that can naturally be regarded as the
state of our system, an object associated with the system itself in terms of
which the results of experiments performed on our system can be simply
expressed. This object is a density matrix W and the results are governed by
(6.1). W is the reduced density matrix arising from the state of the larger
system. This is more or less an immediate consequence of invariance under
trivial extension, described in Section 5.7:

Consider a trivial extension EŒ of an experiment EW O on our sys-
tem—precisely what we must consider if the larger system has a wave
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function kŒ while our (smaller) system does not. The probability that the
result of EŒ lies in D is given by

OkŒ, O(D) é IkŒP=trŒ(|kŒPOkŒ| O(D) é I)=tr(WO(D)), (6.5)

where trŒ is the trace for the xŒ-system (the big system) and tr is the trace
for the x-system. In agreement with standard quantum mechanics, the last
equality of (6.5) defines W as the reduced density matrix of the x-system,
i.e.,

W — tr5(|kŒPOkŒ|) (6.6)

where tr5 denotes the partial trace over the coordinates of the x̂-system.

6.2. Strong Experiments and Density Matrices

A strong formal experiment E — {la, Ra} generates state transforma-
tions kQ Rak. This suggests the following action on an initial state
described by a density matrix W: When the outcome is a, we have the
transformation

WQ
RaW

tr(RaW)
—

RaWR
g
a

tr(RaWR
g
a )

(6.7)

where

RaW=RaWR
g
a . (6.8)

After all, (6.7) is a density matrix naturally associated with Ra and W, and
it agrees with kQ Rak for a pure state, W=|kPOk|. In order to show that
(6.7) is indeed correct, we must verify it for the two different ways in which
our system might be assigned a density matrix W, i.e., for W an ensemble
density matrix and for W a reduced density matrix.

Suppose the initial wave function is random, with distribution p(dk).
Then the initial state of our system is given by the density matrix (6.4).
When the outcome a is obtained, two changes must be made in (6.4) to
reflect this information: |kPOk| must be replaced by (Ra |kPOk| R

g
a )/||Rak||

2,
and p(dk) must be replaced by p(dk | a), the conditional distribution of the
initial wave function given that the outcome is a. For the latter we have

p(dk | a)=
||Rak||2

tr(RaWR
g
a )
p(dk).
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( ||Rak||2 p(dk) is the joint distribution of k and a and the denominator is
the probability of obtaining the outcome a.) Therefore W undergoes the
transformation

W=F p(dk) |kPOk|Q F p(dk | a)
Ra |kPOk| R

g
a

||Rak||2

=F p(dk)
Ra |kPOk| R

g
a

tr(RaWR
g
a )
=

RaWR
g
a

tr(RaWR
g
a )
.

We wish to emphasize that this demonstrates in particular the nontri-
vial fact that the density matrix RaW/tr(RaW) produced by the experi-
ment depends only upon the initial density matrix W. Though W can arise
in many different ways, corresponding to the multiplicity of different
probability distributions p(dk) yielding W via (6.4), insofar as the final
state is concerned, these differences don’t matter.

This does not, however, establish (6.7) when W arises not from a
random wave function but as a reduced density matrix. To deal with this
case we consider a trivial extension EŒ of a discrete experiment E with state
transformations Ra. Then EŒ has state transformations Ra é Û (see Sec-
tion 5.7). Thus, when the initial state of the xŒ-system is kŒ, the final state
of the x-system is given by the partial trace

tr5(Ra é Û |kŒPOkŒ| Rg
a é Ûg)

trŒ(Ra é Û |kŒPOkŒ| Rg
a é Ûg)

=
tr5(Ra é I |kŒPOkŒ| Rg

a é I)
trŒ(Ra é I |kŒPOkŒ| Rg

a é I)

=
Ra tr5(|kŒPOkŒ|) Rg

a

tr(Ra tr5(|kŒPOkŒ|) Rg
a )

=
RaWR

g
a

tr(RaWR
g
a )
,

where the cyclicity of the trace has been used.
To sum up, when a strong experiment E — {la, Ra} is performed on

a system described by the initial density matrix W and the outcome a is
obtained, the final density matrix is given by (6.7); moreover, from the
results of the previous section it follows that the outcome a will occur with
probability

pa=tr(WOa)=tr(WRg
aRa)=tr(RaW), (6.9)

where the last equality follows from the cyclicity of the trace.
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6.3. The Notion of Instrument

We shall briefly comment on the relationship between the notion of
strong formal experiment and that of instrument (or effect) discussed by
Davies. (21)

Consider an experiment E — {la, Ra} on a system with initial density
matrix W. Then a natural object associated with E is the set function

R(D) W — C
la ¥ D

RaW= C
la ¥ D

RaWR
g
a . (6.10)

The set function R: DWR(D) compactly expresses both the statistics of E
for a general initial system density matrix W and the effect of E on W con-
ditioned on the occurrence of the event ‘‘the result of E is in D.’’

To see this, note first that it follows from (6.9) that the probability
that the result of the experiment lies in the set D is given by

p(D)=tr(R(D) W).

The conditional distribution p(a | D) that the outcome is a given that the
result la ¥ D is then tr(RaW)/tr(R(D) W). The density matrix that reflects
the knowledge that the result is in a, obtained by averaging (6.7) over D
using p(a | D), is thus R(D) W/tr(R(D) W).

It follows from (6.10) that R is a countably additive set function
whose values are positivity-preserving linear transformations in the space
of trace-class operators on H. Any map with these properties, not neces-
sarily of the special form (6.10), is called an instrument.

6.4. On the State Description Provided by Density Matrices

So far we have followed the standard terminology and have spoken of
a density matrix as describing the state of a physical system. It is important
to appreciate, however, that this is merely a frequently convenient way of
speaking, for Bohmian mechanics as well as for orthodox quantum theory.
Insofar as Bohmian mechanics is concerned, the significance of density
matrices is neither more nor less than what is implied by their role in the
quantum formalism as described in Sections 6.1 and 6.2. While many
aspects of the notion of (effective) wave function extend to density matri-
ces, in particular with respect to weak and strong experiments, density
matrices lack the dynamical implications of wave functions for the evolu-
tion of the configuration, a point that has been emphasized by Bell: (7)
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In the de Broglie–Bohm theory a fundamental significance is given to the wave
function, and it cannot be transferred to the density matrix. ... Of course the
density matrix retains all its usual practical utility in connection with quantum
statistics.

That this is so should be reasonably clear, since it is the wave function that
determines, in Bohmian mechanics, the evolution of the configuration, and
the density matrix of a system does not determine its wave function, even
statistically. To underline the point we shall recall the analysis of Bell: (7)

Consider a particle described by a density matrix Wt evolving autono-
mously, so that Wt=UtW0U

−1
t , where Ut is the unitary group generated by

a Schrödinger Hamiltonian. Then rWt(x) —Wt(x, x) — Ox| Wt |xP gives the
probability distribution of the position of the particle. Note that rW satis-
fies the continuity equation

“rW

“t
+div JW=0 where JW(x)=

(

m
Im[NxW(x, xŒ)]xŒ=x.

This might suggest that the velocity of the particle should be given by
v=JW/rW, which indeed agrees with the usual formula when W is a pure
state (W(x, xŒ)=k(x) kg(xŒ)). However, this extension of the usual
formula to arbitrary density matrices, though mathematically ‘‘natural,’’ is
not consistent with what Bohmian mechanics prescribes for the evolution
of the configuration. Consider, for example, the situation in which the
wave function of a particle is random, either k1 or k2, with equal probabil-
ity. Then the density matrix is W(x, xŒ)=1

2 (k1(x) k
g
1 (xŒ)+k2(x) k

g
2 (xŒ)).

But the velocity of the particle will be always either v1 or v2 (according to
whether the actual wave function is k1 or k2 ), and—unless k1 and k2 have
disjoint supports—this does not agree with JW/rW, an average of v1 and v2.

What we have just said is correct, however, only when spin is ignored.
For particles with spin a novel kind of density matrix emerges, a condi-
tional density matrix, analogous to the conditional wave function (2.6) and
with an analogous dynamical role: Even though no conditional wave func-
tion need exist for a system entangled with its environment when spin is
taken into account, a conditional density matrix W always exists, and is
such that the velocity of the system is indeed given by JW/rW. See ref. 31
for details.

A final remark: the statistical role of density matrices is basically dif-
ferent from that provided by statistical ensembles, e.g, by Gibbs states in
classical statistical mechanics. This is because, as mentioned earlier, even
when it describes a random wave function via (6.4), a density matrix W
does not determine the ensemble p(dk) from which it emerges. The map
defined by (6.4) from probability measures p on the unit sphere in H to
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density matrices W is many-to-one.38 Consider, for example, the density

38 This is relevant to the foundations of quantum statistical mechanics, for which the state of
an isolated thermodynamic system is usually described by the microcanonical density matrix
Z−1d(H−E), where Z=tr d(H−E) is the partition function. Which ensemble of wave
functions should be regarded as forming the thermodynamic ensemble? A natural choice is
the uniform measure on the subspace H=E, which should be thought of as fattened in the
usual way. Note that this choice is quite distinct from another one that people often have in
mind: a uniform distribution over a basis of energy eigenstates of the appropriate energy.
Depending upon the choice made, we obtain different notions of typical equilibrium wave
function.

matrix 1
n I where I is the identity operator on an n-dimensional Hilbert

space H. Then a uniform distribution over the vectors of any given
orthonormal basis of H leads to this density matrix, as well as does the
continuous uniform measure on the sphere ||k||=1. However, since the
statistical distribution of the results of any experiment depends on p only
through W, different p’s associated with the same W are empirically equiv-
alent in the sense that they can’t be distinguished by experiments performed
on a system prepared somehow in the state W.

7. GENUINE MEASUREMENTS

We have so far discussed various interactions between a system and an
apparatus relevant to the quantum measurement formalism, from the very
special ones formalized by ‘‘ideal measurements’’ to the general situation
described in Section 5. It is important to recognize that nowhere in this
discussion was there any implication that anything was actually being
measured. The fact that an interaction with an apparatus leads to a pointer
orientation that we call the result of the experiment or ‘‘measurement’’ in
no way implies that this result reflects anything of significance concerning
the system under investigation, let alone that it reveals some preexisting
property of the system—and this is what is supposed to be meant by the
word measurement. After all, (72) ‘‘any old playing around with an indicat-
ing instrument in the vicinity of another body, whereby at any old time one
then takes a reading, can hardly be called a measurement of this body,’’
and the fact the experiment happens to be associated, say, with a self-
adjoint operator in the manner we have described, so that the experiment is
spoken of, in the quantum formalism, as a measurement of the corre-
sponding observable, certainly offers little support for using language in
this way.

We shall elaborate on this point later on. For now we wish to observe
that the very generality of our analysis, particularly that of Section 5,
covering as it does all possible interactions between system and apparatus,

1026 Dürr et al.



covers as well those particular situations that in fact are genuine measure-
ments. This allows us to make some definite statements about what can be
measured in Bohmian mechanics.

For a physical quantity, describing an objective property of a system,
to be measurable means that it is possible to perform an experiment on the
system that measures the quantity, i.e., an experiment whose result conveys
its value. In Bohmian mechanics a physical quantity t is expressed by a
function

t=f(X, k) (7.1)

of the complete state (X, k) of the system. An experiment E measuring t is
thus one whose result Z=F(XT, YT) — Z(X, Y, Y) equals t=f(X, k) —
t(X, k),

Z(X, Y, Y)=t(X, k), (7.2)

where X, Y, k, and Y refer, as in Section 5, to the initial state of system
and apparatus, immediately prior to the measurement, and where the
equality should be regarded as approximate, holding to any desired degree
of accuracy.

The most basic quantities are, of course, the state components them-
selves, namely X and k, as well as the velocities

vk=
(

mk
Im

Nkk(X)
k(X)

(7.3)

of the particles. One might also consider quantities describing the future
behavior of the system, such as the configuration of an isolated system at
a later time, or the time of escape of a particle from a specified region, or
the asymptotic velocity discussed in Section 5.5. (Because the dynamics is
deterministic, all of these quantities are functions of the initial state of the
system and are thus of the form (7.1).)

We wish to make a few remarks about the measurability of these
quantities. In particular, we wish to mention, as an immediate consequence
of the analysis at the beginning of Section 5, a condition that must be
satisfied by any quantity if it is to be measurable.

7.1. A Necessary Condition for Measurability

Consider any experiment E measuring a physical quantity t. We showed
in Section 5 that the statistics of the result Z of E must be governed by a
POVM, i.e., that the probability distribution ofZmust be given by a measure-
valued quadratic map on the system Hilbert space H. Thus, by (7.2),
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t is measurable only if its probability distribution mkt
is a measure-valued quadratic map on H. (7.4)

As indicated earlier, the position X and the asymptotic velocity or
momentum P have distributions quadratic in k, namely mkX(dx)=|k(x)|2

and mkP(dp)=|k̃(p)|2, respectively. Moreover, they are both measurable,
basically because suitable local interactions exist to establish appropriate
correlations with the relevant macroscopic variables. For example, in a
bubble chamber a particle following a definite path triggers a chain of reac-
tions that leads to the formation of (macroscopic) bubbles along the path.

The point we wish to make now, however, is simply this: the measur-
ability of these quantities is not a consequence of the fact that these quan-
tities obey this measurability condition. We emphasize that this condition is
merely a necessary condition for measurability, and not a sufficient one.
While it does follow that if t satisfies this condition there exists a discrete
experiment that is an approximate formal measurement of t (in the sense
that the distribution of the result of the experiment is approximately mkt ),
this experiment need not provide a genuine measurement of t because the
interactions required for its implementation need not exist and because,
even if they did, the result Z of the experiment might not be related to the
quantity t in the right way, i.e., via (7.2).

We now wish to illustrate the use of this condition, first transforming
it into a weaker but more convenient form. Note that any quadratic map
mk must satisfy

mk1+k2+mk1 −k2=2(mk1+mk2)

and thus if mk is also positive we have the inequality

mk1+k2 [ 2(mk1+mk2). (7.5)

Thus it follows from (7.4) that a quantity39

39 This conclusion is also a more or less direct consequence of the linearity of the Schrödinger
evolution: If ki é F0 WYi for all i, then ; ki é F0 W; Yi. But, again, our purpose here
has been mainly to illustrate the use of the measurability condition itself.

t must fail to be measurable if it has a possible value (one with
nonvanishing probability or probability density) when the
wave function of the system is k1+k2 that is neither a possible
value when the wave function is k1 nor a possible value
when the wave function is k2. (7.6)

(Here neither k1 nor k2 need be normalized.)
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7.2. The Nonmeasurability of Velocity, Wave Function, and

Deterministic Quantities

It is an immediate consequence of (7.6) that neither the velocity nor
the wave function is measurable, the latter because the value ‘‘k1+k2’’ is
neither ‘‘k1’’ nor ‘‘k2,’’ and the former because every wave function k may
be written as k=k1+k2 where k1 is the real part of k and k2 is i times the
imaginary part of k, for both of which the velocity (of whatever particle)
is 0.

Note that this is a very strong and, in a sense, surprising conclusion, in
that it establishes the impossibility of measuring what is, after all, a most
basic dynamical variable for a deterministic mechanical theory of particles
in motion. It should probably be regarded as even more surprising that the
proof that the velocity—or wave function—is not measurable seems to
rely almost on nothing, in effect just on the linearity of the evolution of
the wave function. However, one should not overlook the crucial role of
quantum equilibrium.

We observe that the nonmeasurability of the wave function is related
to the impossibility of copying the wave function. ( This question arises
sometimes in the form, ‘‘Can one clone the wave function?’’ (36, 37, 78))
Copying would be accomplished, for example, by an interaction leading,
for all k, from k é f0 é F0 to k é k é F, but this is clearly incompatible
with unitarity. We wish here merely to remark that the impossibility of
cloning can also be regarded as a consequence of the nonmeasurability of
the wave function. In fact, were cloning possible one could—by making
many copies—measure the wave function by performing suitable mea-
surements on the various copies. After all, any wave function k is deter-
mined by Ok, AkP for sufficiently many observables A and these expecta-
tion values can of course be computed using a sufficiently large ensemble.

By a deterministic quantity we mean any function t=f(k) of the
wave function alone (which thus does not inherit any irreducible random-
ness associated with the random configuration X). It follows easily from
(7.6) that no (nontrivial) deterministic quantity is measurable.40 In particu-

40 Note also that mkt (dl)=d(l−f(k)) dl seems manifestly nonquadratic in k (unless f is
constant).

lar, the mean value Ok, AkP of an observable A (not a multiple of the
identity) is not measurable—though it would be were it possible to copy
the wave function, and it can be measured by a nonlinear experiment, see
Section 7.4.
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7.3. Initial Values and Final Values

Measurement is a tricky business. In particular, one may wonder how,
if it is not measurable, we are ever able to know the wave function of a
system—which in orthodox quantum theory often seems to be the only
thing that we do know about it.

In this regard, it is important to appreciate that we were concerned in
the previous section only with initial values, with the wave function and the
velocity prior to the measurement. We shall now briefly comment upon the
measurability of final values, produced by the experiment.

The nonmeasurability argument of Section 7.2 does not cover final
values. This may be appreciated by noting that the crucial ingredient in the
analysis involves a fundamental time-asymmetry: The probability distribu-
tion mk of the result of an experiment is a quadratic functional of the initial
wave function k, not the final one—of which it is not a functional at all.
Moreover, the final velocity can indeed be measured, by a momentum
measurement as described in Section 5.5. ( That such a measurement yields
also the final velocity follows from the formula in footnote 5.5 for the
asymptotic wave function.) And the final wave function can be measured
by an ideal measurement of any nondegenerate observable, and more
generally by any strong formal measurement whose subspaces Ha are one-
dimensional, see Section 3.5: If the outcome is a, the final wave function is
Rak=RaPHa

k, which is independent of the initial wave function k (up to a
scalar multiple).

We also wish to remark that this distinction between measurements of
initial values and measurements of final values has no genuine significance
for passive measurements, that merely reveal preexisting properties without
in any way affecting the measured system. However, quantum measure-
ments are usually active; for example, an ideal measurement transforms the
wave function of the system into an eigenstate of the measured observable.
But passive or active, a measurement, by its very meaning, is concerned
strictly speaking with properties of a system just before its performance,
i.e., with initial values. At the same time, to the extent that any property of
a system is conveyed by a typical quantum ‘‘measurement,’’ it is a property
defined by a final value.

For example, according to orthodox quantum theory a position mea-
surement on a particle with a spread-out wave function, to the extent that
it measures anything at all, measures the final position of the particle,
created by the measurement, rather than the initial position, which is
generally regarded as not existing prior to the measurement. And even in
Bohmian mechanics, in which such a measurement may indeed reveal the
initial position, which—if the measurement is suitably performed—will
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agree with the final position, this measurement will still be active since the
wave function of the system must be transformed by the measurement into
one that is compatible with the sharper knowledge of the position that it
provides, see Section 2.1.

7.4. Nonlinear Measurements and the Role of Prior Information

The basic idea of measurement is predicated on initial ignorance. We
think of a measurement of a property of a system as conveying that prop-
erty by a procedure that does not seriously depend upon the state of the
system,41 any details of which must after all be unknown prior to at least

41 This statement must be taken with a grain of salt. Some things must be known about the
system prior to measurement, for example, that it is in the vicinity the measurement appa-
ratus, or that an atom whose angular momentum we wish to measure is moving towards the
relevant Stern Gerlach magnets, as well as a host of similar, often unnoticed, pieces of
information. This sort of thing does not much matter for our purposes in this paper and can
be safely ignored. Taking them into account would introduce pointless complications
without affecting the analysis in an essential way.

some engagement with the system. Be that as it may, the notion of mea-
surement as codified by the quantum formalism is indeed rooted in a
standpoint of ignorance: the experimental procedures involved in the mea-
surement do not depend upon the state of the measured system. And our
entire discussion of measurement up to now has been based upon that very
assumption, that E itself does not depend on k (and certainly not on X).

If, however, some prior information on the initial system wave func-
tion k were available, we could exploit this information to measure quan-
tities that would otherwise fail to be measurable. For example, for a single-
particle system, if we somehow knew its initial wave function k then a
measurement of the initial position of the particle would convey its initial
velocity as well, via (7.3)—even though, as we have shown, this quantity
isn’t measurable without such prior information.

By a nonlinear measurement or experiment E=Ek we mean one in
which, unlike those considered so far, one or more of the defining charac-
teristics of the experiment depends upon k. For example, in the measure-
ment of the initial velocity described in the previous paragraph, the cali-
bration function F=Fk depends upon k.42 More generally we might have

42 Suppose that Z1=F1(QT)=X is the result of the measurement of the initial position. Then
Fk=Gk p F1 where Gk( · )=(

m Im Nk

k
( · ).

that U=Uk or F0=F
k
0 .

The wave function can of course be measured by a nonlinear mea-
surement—just let Fk — k. Somewhat less trivially, the initial wave function
can be measured, at least formally, if it is known to be a member of a given
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orthonormal basis, by measuring any nondegenerate observable whose
eigenvectors form that basis. The proposals of Aharonov, Anandan and
Vaidman (1) for measuring the wave function, though very interesting, are of
this character—they involve nonlinear measurements that depend upon a
choice of basis containing k—and thus remain controversial.43

43 In one of their proposals the wave function is ‘‘protected’’ by a procedure that depends
upon the basis; in another, involving adiabatic interactions, k must be a nondegenerate
eigenstate of the Hamiltonian H of the system, but it is not necessary that the latter be
known.

7.5. A Position Measurement that Does not Measure Position

We began this section by observing that what is spoken of as a mea-
surement in quantum theory need not really measure anything. We men-
tioned, however, that in Bohmian mechanics the position can be measured,
and the experiment that accomplishes this would of course be a measure-
ment of the position operator. We wish here to point out, by means of a
very simple example, that the converse is not true, i.e., that a measurement
of the position operator need not be a measurement of the position.

Consider the harmonic oscillator in 2 dimensions with Hamiltonian

H=−
(
2

2m
1 “2
“x2
+
“
2

“y2
2+w

2m
2
(x2+y2).

Except for an irrelevant time-dependent phase factor, the evolution kt is
periodic, with period y=2p/w. The Bohm motion of the particle, however,
need not have period y. For example, the (n=1, m=1)-state, which in
polar coordinates is of the form

kt(r, f)=
mw

( `p
re

− mw
2(
r2

e ife
−i 32 wt, (7.7)

generates a circular motion of the particle around the origin with angular
velocity (/(mr2), and hence with periodicity depending upon the initial
position of the particle—the closer to the origin, the faster the rotation.
Thus, in general,

Xy ] X0.

Nonetheless, Xy and X0 are identically distributed random variables, since
|ky |2=|k0 |2 — |k|2.
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We may now focus on two different experiments: Let E be a mea-
surement of the actual position X0, the initial position, and hence of the
position operator, and let EŒ be an experiment beginning at the same time
as E but in which it is the position Xy at time y that is actually measured.
Since for all k the result of EŒ has the same distribution as the result of E,
EŒ is also a measurement of the position operator. But EŒ is not a mea-
surement of the initial position since the position at time y does not in
general agree with the initial position: A measurement of the position at
time y is not a measurement of the position at time 0. Thus, while a mea-
surement of position is always a measurement of the position operator,

A measurement of the position operator is not necessarily a genuine measurement of
position!

7.6. Theory Dependence of Measurement

The harmonic oscillator example provides a simple illustration of an
elementary point that is often ignored: in discussions of measurement it is
well to keep in mind the theory under consideration. The theory we have
been considering here has been Bohmian mechanics. If, instead, we were to
analyze the harmonic oscillator experiments described above using different
theories our conclusions about results of measurements would in general be
rather different, even if the different theories were empirically equivalent.
So we shall analyze the above experiment EŒ in terms of various other
formulations or interpretations of quantum theory.

In strict orthodox quantum theory there is no such thing as a genuine
particle, and thus there is no such thing as the genuine position of a par-
ticle. There is, however, a kind of operational definition of position, in the
sense of an experimental setup, where a measurement device yields results
the statistics of which are given by the position operator.

In naive orthodox quantum theory one does speak loosely about a
particle and its position, which is thought of—in a somewhat uncritical
way—as being revealed by measuring the position operator. Any experi-
ment that yields statistics given by the position operator is considered a
genuine measurement of the particle’s position.44 Thus EŒ would be con-

44 This, and the failure to appreciate the theory dependence of measurements, has been a
source of unfounded criticisms of Bohmian mechanics (see refs. 22, 24, and 33).

sidered as a measurement of the position of the particle at time zero.
The decoherent (or consistent) histories formulation of quantum

mechanics (35, 46, 65) is concerned with the probabilities of certain coarse-
grained histories, given by the specification of finite sequences of events,
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associated with projection operators, together with their times of occur-
rence. These probabilities are regarded as governing the occurrence of the
histories, regardless of whether any of the events are measured or observed,
but when they are observed, the probabilities of the observed histories are
the same as those of the unobserved histories. The experiments E and EŒ
are measurements of single-event histories corresponding to the position
of the particle at time 0 and at time y, respectively. Since the Heisenberg
position operators X̂y=X̂0 for the harmonic oscillator, it happens to be the
case, according to the decoherent histories formulation of quantum
mechanics, that for this system the position of the particle at time y is the
same as its position at time 0 when the positions are unobserved, and that
EŒ in fact measures the position of the particle at time 0 (as well as the
position at time y).

The spontaneous localization or dynamical reduction models (38, 40) are
versions of quantum theory in which there are no genuine particles; in these
theories reality is represented by the wave function alone (or, more accura-
tely, by entities entirely determined by the wave function). In these models
Schrödinger’s equation is modified by the addition of a stochastic term that
causes the wave function to collapse during measurement in a manner more
or less consistent with the quantum formalism. In particular, the perfor-
mance of E or EŒ would lead to a random collapse of the oscillator wave
function onto a narrow spatial region, which might be spoken of as the
position of the particle at the relevant time. But EŒ could not be regarded in
any sense as measuring the position at time 0, because the localization does
not occur for EŒ until time y.

Finally we mention stochastic mechanics, (64) a theory ontologically
very similar to Bohmian mechanics in that the basic entities with which it
is concerned are particles described by their positions. Unlike Bohmian
mechanics, however, the positions evolve randomly, according to a diffu-
sion process. Just as with Bohmian mechanics, for stochastic mechanics the
experiment EŒ is not a measurement of the position at time zero, but in
contrast to the situation in Bohmian mechanics, where the result of the
position measurement at time y determines, given the wave function, the
position at time zero (via the Bohmian equation of motion), this is not so
in stochastic mechanics because of the randomness of the motion.

8. HIDDEN VARIABLES

The issue of hidden variables concerns the question of whether
quantum randomness arises in a completely ordinary manner, merely from
the fact that in orthodox quantum theory we deal with an incomplete
description of a quantum system. According to the hidden-variables

1034 Dürr et al.



hypothesis, if we had at our disposal a sufficiently complete description of
the system, provided by supplementary parameters traditionally called
hidden variables, the totality of which is usually denoted by l, the behavior
of the system would thereby be determined, as a function of l (and the
wave function). In such a hidden-variables theory, the randomness in
results of measurements would arise solely from randomness in the
unknown variables l. On the basis of a variety of ‘‘impossibility theorems,’’
the hidden-variables hypothesis has been widely regarded as having been
discredited.

Note that Bohmian mechanics is just such a hidden-variables theory,
with the hidden variables l given by the configuration Q of the total
system. We have seen in particular that in a Bohmian experiment, the result
Z is determined by the initial configuration Q=(X, Y) of the system and
apparatus. Nonetheless, there remains much confusion about the relation-
ship between Bohmian mechanics and the various theorems supposedly
establishing the impossibility of hidden variables. In this section we wish to
make several comments on this matter.

8.1. Experiments and Random Variables

In Bohmian mechanics we understand very naturally how random
variables arise in association with experiments: the initial complete state
(Q, Y) of system and apparatus evolves deterministically and uniquely
determines the outcome of the experiment; however, as the initial configu-
ration Q is in quantum equilibrium, the outcome of the experiment is
random.

A general experiment E is then always associated a random variable
(RV) Z describing its result. In other words, according to Bohmian
mechanics, there is a natural association

EW Z, (8.1)

between experiments and RVs. Moreover, whenever the statistics of the
result of E is governed by a self-adjoint operator A on the Hilbert space of
the system, with the spectral measure of A determining the distribution
of Z, for which we shall write ZW A (see (2.37)), Bohmian mechanics
establishes thereby a natural association between E and A

EW A. (8.2)

While for Bohmian mechanics the result Z depends in general on both
X and Y, the initial configurations of the system and of the apparatus, for
many real-world experiments Z depends only on X and the randomness
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in the result of the experiment is thus due solely to randomness in the
initial configuration of the system alone. This is most obvious in the case of
genuine position measurements (for which Z(X, Y)=X). That in fact the
apparatus need not introduce any extra randomness for many other real-
world experiments as well follows then from the observation that the role
of the apparatus in many real-world experiments is to provide suitable
background fields, which introduce no randomness, as well as a final
detection, a measurement of the actual positions of the particles of the
system. In particular, this is the case for those experiments most relevant to
the issue of hidden variables, such as Stern–Gerlach measurements of spin,
as well as for momentum measurements and more generally scattering
experiments, which are completed by a final detection of position.

The result of these experiments is then given by a random variable

Z=F(XT)=G(X),

where T is the final time of the experiment,45 on the probability space

45 Concerning the most common of all real-world quantum experiments, scattering experi-
ments, although they are completed by a final detection of position, this detection usually
occurs, not at a definite time T, but at a random time, for example when a particle enters a
localized detector. Nonetheless, for computational purposes the final detection can be
regarded as taking place at a definite time T. This is a consequence of the flux-across-sur-
faces theorem, (19, 26, 27) which establishes an asymptotic equivalence between flux across sur-
faces (detection at a random time) and scattering into cones (detection at a definite time).

{W, P}, where W={X} is the set of initial configurations of the system and
P(dx)=|k|2 dx is the quantum equilibrium distribution associated with the
initial wave function k of the system. For these experiments (see Sec-
tion 5.4) the distribution of Z is always governed by a PVM, corresponding
to some self-adjoint operator A, ZW A, and thus Bohmian mechanics
provides in these cases a natural map EW A.

8.2. Random Variables, Operators, and the Impossibility Theorems

We would like to briefly review the status of the so-called impossibility
theorems for hidden variables, the most famous of which are due to von
Neumann, (74) Gleason, (41) Kochen and Specker, (53) and Bell. (5) Since
Bohmian mechanics exists, these theorems can’t possibly establish the
impossibility of hidden variables, the widespread belief to the contrary
notwithstanding. What these theorems do establish, in great generality, is
that there is no ‘‘good ’’ map from self-adjoint operators on a Hilbert space
H to random variables on a common probability space,

AW Z — ZA, (8.3)
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where ZA=ZA(l) should be thought of as the result of ‘‘measuring A’’
when the hidden variables, that complete the quantum description and
restore determinism, have value l. Different senses of ‘‘good’’ correspond
to different impossibility theorems.

For any particular choice of l, say l0, the map (8.3) is transformed to
a value map

AW v(A) (8.4)

from self-adjoint operators to real numbers (with v(A)=ZA(l0)). The
stronger impossibility theorems establish the impossibility of a good value
map, again with different senses of ‘‘good’’ corresponding to different
theorems.

Note that such theorems are not very surprising. One would not
expect there to be a ‘‘good’’ map from a noncommutative algebra to a
commutative one.

One of von Neumann’s assumptions was, in effect, that the map (8.3)
be linear. While mathematically natural, this assumption is physically
rather unreasonable and in any case is entirely unnecessary. In order to
establish that there is no good map (8.3), it is sufficient to require that the
map be good in the minimal sense that the following agreement condition is
satisfied:

Whenever the quantum mechanical joint distribution of a set of self-adjoint
operators (A1,..., Am) exists, i.e., when they form a commuting family, the joint dis-
tribution of the corresponding set of random variables, i.e., of (ZA1 ,..., ZAm ), agrees
with the quantum mechanical joint distribution.

The agreement condition implies that all deterministic relationships
among commuting observables must be obeyed by the corresponding
random variables. For example, if A, B, and C form a commuting family
and C=AB, then we must have that ZC=ZAZB since the joint distribution
of ZA, ZB, and ZC must assign probability 0 to the set {(a, b, c) ¥ R3 |
c ] ab}. This leads to a minimal condition for a good value map AW v(A),
namely that it preserve functional relationships among commuting observ-
ables: For any commuting family A1,..., Am, whenever f(A1,..., Am)=0
(where f: Rm

Q R represents a linear, multiplicative, or any other relation-
ship among the A i’s), the corresponding values must satisfy the same rela-
tionship, f(v(A1),..., v(Am))=0.
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The various impossibility theorems correctly demonstrate that there
are no maps, from self-adjoint operators to random variables or to values,
that are good, merely in the minimal senses described above.46

46 Another natural sense of good map AW v(A) is given by the requirement that v(A) ¥
sp(A), where A=(A1,..., Am) is a commuting family, v(A)=(v(A1),..., v(Am)) ¥ Rm and
sp(A) is the joint spectrum of the family. That a map good in this sense is impossible
follows from the fact that if a=(a1,..., am) ¥ sp(A), then a1,..., am must obey all functional
relationships for A1,..., Am.

We note that while the original proofs of the impossibility of a good
value map, in particular that of the Kochen–Specker theorem, were quite
involved, in more recent years drastically simpler proofs have been found
(for example, by Peres, (67) by Greenberg, Horne, and Zeilinger, (45) and by
Mermin (62)).

In essence, one establishes the impossibility of a good map AW ZA or
AW v(A) by showing that the v(A)’s, or ZA’s, would have to satisfy
impossible relationships. These impossible relationships are very much like
the following: ZA=ZB=ZC ] ZA. However no impossible relationship can
arise for only three quantum observables, since they would have to form a
commuting family, for which quantum mechanics would supply a joint
probability distribution. Thus the quantum relationships can’t possibly lead
to an inconsistency for the values of the random variables in this case.

With four observables A, B, C, and D it may easily happen that
[A, B]=0, [B, C]=0, [C, D]=0, and [D, A]=0 even though they don’t
form a commuting family (because, say, [A, C] ] 0). It turns out, in fact,
that four observables suffice for the derivation of impossible quantum
relationships. Perhaps the simplest example of this sort is due to Hardy, (48)

who showed that for almost every quantum state for two spin 1/2 particles
there are four observables A, B, C, and D (two of which happen to be spin
components for one of the particles while the other two are spin compo-
nents for the other particle) whose quantum mechanical pair-wise distribu-
tions for commuting pairs are such that a good map to random variables
must yield random variables ZA, ZB, ZC, and ZD obeying the following
relationships:

(1) The event {ZA=1 and ZB=1} has positive probability (with an
optimal choice of the quantum state, about 0.09).

(2) If {ZA=1} then {ZD=1}.
(3) If {ZB=1} then {ZC=1}.
(4) The event {ZD=1 and ZC=1} has probability 0.

Clearly, there exist no such random variables.
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The point we wish to emphasize here, however, is that although they
are correct and although their hypotheses may seem minimal, these
theorems are nonetheless far less relevant to the possibility of a determinis-
tic completion of quantum theory than one might imagine. In the next
subsection we will elaborate on how that can be so. We shall explain why
we believe such theorems have little physical significance for the issues of
determinism and hidden variables. We will separately comment later in this
section on Bell’s related nonlocality analysis, (5) which does have profound
physical implications.

8.3. Contextuality

It is a simple fact there can be no map AW ZA, from self-adjoint
operators on H (with dim(H) \ 3) to random variables on a common
probability space, that is good in the minimal sense that the joint probabil-
ity distributions for the random variables agree with the corresponding
quantum mechanical distributions, whenever the latter ones are defined.
But does not Bohmian mechanics yield precisely such a map? After all,
have we not emphasized how Bohmian mechanics naturally associates with
any experiment a random variable Z giving its result, in a manner that is in
complete agreement with the quantum mechanical predictions for the result
of the experiment? Given a quantum observable A, let ZA be then the result
of a measurement of A. What gives?

Before presenting what we believe to be the correct response, we
mention some possible responses that are off-target. It might be objected
that measurements of different observables will involve different apparatu-
ses and hence different probability spaces. However, one can simulta-
neously embed all the relevant probability spaces into a huge common
probability space. It might also be objected that not all self-adjoint opera-
tors can be realistically be measured. But to arrive at inconsistency one
need consider, as mentioned in the last subsection, only 4 observables, each
of which are spin components and are thus certainly measurable, via
Stern–Gerlach experiments. Thus, in fact, no enlargement of probability
spaces need be considered to arrive at a contradiction, since as we empha-
sized at the end of Section 8.1, the random variables giving the results of
Stern–Gerlach experiments are functions of initial particle positions, so
that for joint measurements of pairs of spin components for 2-particles the
corresponding results are random variables on the common probability
space of initial configurations of the 2 particles, equipped with the
quantum equilibrium distribution determined by the initial wave function.

There must be a mistake. But where could it be? The mistake occurs,
in fact, so early that it is difficult to notice it. It occurs at square one. The

Quantum Equilibrium and the Role of Operators as Observables 1039



difficulty lies not so much in any conditions on the map AW ZA, but in the
conclusion that Bohmian mechanics supplies such a map at all.

What Bohmian mechanics naturally supplies is a map EW ZE, from
experiments to random variables. When ZE W A, so that we speak of E as a
measurement of A (EW A), this very language suggests that insofar as the
random variable is concerned all that matters is that E measures A, and the
map EW ZE becomes a map AW ZA. After all, if E were a genuine mea-
surement of A, revealing, that is, the preexisting (i.e., prior to the experi-
ment) value of the observable A, then Z would have to agree with that
value and hence would be an unambiguous random variable depending
only on A.

But this sort of argument makes sense only if we take the quantum
talk of operators as observables too seriously. We have emphasized in this
paper that operators do naturally arise in association with quantum exper-
iments. But there is little if anything in this association, beyond the unfor-
tunate language that is usually used to describe it, that supports the notion
that the operator A associated with an experiment E is in any meaningful
way genuinely measured by the experiment. From the nature of the asso-
ciation itself, it is difficult to imagine what this could possibly mean. And
for those who think they imagine some meaning in this talk, the impossi-
bility theorems show they are mistaken.

The bottom line is this: in Bohmian mechanics the random variables
ZE giving the results of experiments E depend, of course, on the experi-
ment, and there is no reason that this should not be the case when the
experiments under consideration happen to be associated with the same
operator. Thus with any self-adjoint operator A, Bohmian mechanics
naturally may associate many different random variables ZE, one for each
different experiment EW A associated with A. A crucial point here is that
the map EW A is many-to-one.47

47 We wish to remark that, quite aside from this many-to-oneness, the random variables ZE

cannot generally be regarded as corresponding to any sort of natural property of the
‘‘measured’’ system. ZE, in general a function of the initial configuration of the system-
apparatus composite, may fail to be a function of the configuration of the system alone.
And even when, as is often the case, ZE does depend only on the initial configuration of the
system, owing to chaotic dynamics this dependence could have an extremely complex
character.

Suppose we define a map AW ZA by selecting, for each A, one of the
experiments, call it EA, with which A is associated, and define ZA to be ZEA

.
Then the map so defined can’t be good, because of the impossibility
theorems; moreover there is no reason to have expected the map to be
good. Suppose, for example, that [A, B]=0. Should we expect that the

1040 Dürr et al.



joint distribution of ZA and ZB will agree with the joint quantum mechani-
cal distribution of A and B? Only if the experiments EA and EB used to
define ZA and ZB both involved a common experiment that ‘‘simulta-
neously measures A and B,’’ i.e., an experiment that is associated with the
commuting family (A, B). If we consider now a third operator C such that
[A, C]=0, but [B, C] ] 0, then there is no choice of experiment E that
would permit the definition of a random variable ZA relevant both to a
‘‘simultaneous measurement of A and B’’ and a ‘‘simultaneous measure-
ment of A and C’’ since no experiment is a ‘‘simultaneous measurement of
A, B, and C.’’ In the situation just described we must consider at least two
random variables associated with A, ZA, B, and ZA, C, depending upon
whether we are considering an experiment ‘‘measuring A and B’’ or an
experiment ‘‘measuring A and C.’’ It should be clear that when the random
variables are assigned to experiments in this way, the possibility of conflict
with the predictions of orthodox quantum theory is eliminated. It should
also be clear, in view of what we have repeatedly stressed, that quite aside
from the impossibility theorems, this way of associating random variables
with experiments is precisely what emerges in Bohmian mechanics.

The dependence of the result of a ‘‘measurement of the observable A’’
upon the other observables, if any, that are ‘‘measured simultaneously
together with A’’—e.g., that ZA, B and ZA, C may be different—is called con-
textuality: the result of an experiment depends not just on ‘‘what observ-
able the experiment measures’’ but on more detailed information that
conveys the ‘‘context’’ of the experiment. The essential idea, however, if we
avoid misleading language, is rather trivial: that the result of an experiment
depends on the experiment.

To underline this triviality we remark that for two experiments, E and EŒ,
that ‘‘measure A and only A’’ and involve no simultaneous ‘‘measurement
of another observable,’’ the results ZE and ZEŒ may disagree. For example
in Section 7.5 we described experiments E and EŒ both of which ‘‘measured
the position operator’’ but only one of which measured the actual initial
position of the relevant particle, so that for these experiments in general
ZE ] ZEŒ.

One might feel, however, that in the example just described the exper-
iment that does not measure the actual position is somewhat disrepu-
table—even though it is in fact a ‘‘measurement of the position operator.’’
We shall therefore give another example, due to D. Albert, (2) in which the
experiments are as simple and canonical as possible and are entirely on the
same footing. Let E‘ and Ea be Stern–Gerlach measurements of A=sz,
with Ea differing from E‘ only in that the polarity of the Stern–Gerlach
magnet for Ea is the reverse of that for E‘ . (In particular, the geometry of
the magnets for E‘ and Ea is the same.) If the initial wave function ksymm
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and the magnetic field ±B have sufficient reflection symmetry with respect
to a plane between the poles of the Stern–Gerlach magnets, the particle
whose spin component is being ‘‘measured’’ cannot cross this plane of
symmetry, so that if the particle is initially above, respectively below, the
symmetry plane, it will remain above, respectively below, that plane. But
because their magnets have opposite polarity, E‘ and Ea involve opposite
calibrations: F‘=−Fa . It follows that

Zksymm
E‘

=−Zksymm
E a

and the two experiments completely disagree about the ‘‘value of sz’’ in this
case.

The essential point illustrated by the previous example is that instead
of having in Bohmian mechanics a natural association sz W Zsz , we have a
rather different pattern of relationships, given in the example by

E‘ Q ZE‘

Ea Q ZE a

s

q
sz.

8.4. Against ‘‘Contextuality’’

The impossibility theorems require the assumption of noncontex-
tuality, that the random variable Z giving the result of a ‘‘measurement of
quantum observable A’’ should depend on A alone, further experimental
details being irrelevant. How big a deal is contextuality, the violation of
this assumption? Here are two ways of describing the situation:

1. In quantum mechanics (or quantum mechanics supplemented with
hidden variables), observables and properties have a novel, highly nonclas-
sical aspect: they (or the result of measuring them) depend upon which
other compatible properties, if any, are measured together with them.

In this spirit, Bohm and Hiley (16) write that (p. 109)

the quantum properties imply ... that measured properties are not intrinsic but are
inseparably related to the apparatus. It follows that the customary language that
attributes the results of measurements ... to the observed system alone can cause
confusion, unless it is understood that these properties are actually dependent on
the total relevant context.

They later add that (p. 122)

The context dependence of results of measurements is a further indication of how
our interpretation does not imply a simple return to the basic principles of classi-
cal physics. It also embodies, in a certain sense, Bohr’s notion of the indivisibility
of the combined system of observing apparatus and observed object.
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2. The result of an experiment depends upon the experiment. Or, as
expressed by Bell (10) (p. 166),

A final moral concerns terminology. Why did such serious people take so seriously
axioms which now seem so arbitrary? I suspect that they were misled by the per-
nicious misuse of the word ‘‘measurement’’ in contemporary theory. This word
very strongly suggests the ascertaining of some preexisting property of some thing,
any instrument involved playing a purely passive role. Quantum experiments are
just not like that, as we learned especially from Bohr. The results have to be
regarded as the joint product of ‘‘system’’ and ‘‘apparatus,’’ the complete experi-
mental set-up. But the misuse of the word ‘‘measurement’’ makes it easy to forget
this and then to expect that the ‘results of measurements’ should obey some simple
logic in which the apparatus is not mentioned. The resulting difficulties soon show
that any such logic is not ordinary logic. It is my impression that the whole vast
subject of ‘‘Quantum Logic’’ has arisen in this way from the misuse of a word.
I am convinced that the word ‘measurement’ has now been so abused that the field
would be significantly advanced by banning its use altogether, in favour for
example of the word ‘‘experiment.’’

With one caveat, we entirely agree with Bell’s observation. The caveat
is this: We do not believe that the difference between quantum mechanics
and classical mechanics is quite as crucial for Bell’s moral as his language
suggests it is. For any experiment, quantum or classical, it would be a
mistake to regard any instrument involved as playing a purely passive role,
unless the experiment is a genuine measurement of a property of a system,
in which case the result is determined by the initial conditions of the system
alone. However, a relevant difference between classical and quantum
theory remains: Classically it is usually taken for granted that it is in prin-
ciple possible to measure any observable without seriously affecting the
observed system, which is clearly false in quantum mechanics (or Bohmian
mechanics).48

48 The assumption could (and probably should) also be questioned classically.

Mermin has raised a similar question (62) (p. 811):

Is noncontextuality, as Bell seemed to suggest, as silly a condition as von
Neumann’s ...?

To this he answers:

I would not characterize the assumption of noncontextuality as a silly constraint
on a hidden-variables theory. It is surely an important fact that the impossibility
of embedding quantum mechanics in a noncontextual hidden-variables theory
rests not only on Bohr’s doctrine of the inseparability of the objects and the mea-
suring instruments, but also on a straightforward contradiction, independent of
one’s philosophic point of view, between some quantitative consequences of non-
contextuality and the quantitative predictions of quantum mechanics.
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This is a somewhat strange answer. First of all, it applies to von Neumann’s
assumption (linearity), which Mermin seems to agree is silly, as well as to
the assumption of noncontextuality. And the statement has a rather ques-
tion-begging flavor, since the importance of the fact to which Mermin
refers would seem to depend on the nonsilliness of the assumption which
the fact concerns.

Be that as it may, Mermin immediately supplies his real argument for
the nonsilliness of noncontextuality. Concerning two experiments for
‘‘measuring observable A,’’ he writes that

it is ... an elementary theorem of quantum mechanics that the joint distribution ...
for the first experiment yields precisely the same marginal distribution (for A) as
does the joint distribution ... for the second, in spite of the different experimental
arrangements. ... The obvious way to account for this, particularly when enter-
taining the possibility of a hidden-variables theory, is to propose that both exper-
iments reveal a set of values for A in the individual systems that is the same,
regardless of which experiment we choose to extract them from. ... A contextual
hidden-variables account of this fact would be as mysteriously silent as the
quantum theory on the question of why nature should conspire to arrange for the
marginal distributions to be the same for the two different experimental arrange-
ments.

A bit later, Mermin refers to the ‘‘striking insensitivity of the distribution
to changes in the experimental arrangement.’’

For Mermin there is a mystery, something that demands an explana-
tion. It seems to us, however, that the mystery here is very much in the eye
of the beholder. It is first of all somewhat odd that Mermin speaks of the
mysterious silence of quantum theory concerning a question whose answer,
in fact, emerges as an ‘‘elementary theorem of quantum mechanics.’’ What
better way is there to answer questions about nature than to appeal to our
best physical theories?

More importantly, the ‘‘two different experimental arrangements,’’ say
E1 and E2, considered by Mermin are not merely any two randomly chosen
experimental arrangements. They obviously must have something in
common. This is that they are both associated with the same self-adjoint
operator A in the manner we have described: E1 W A and E2 W A. It is
quite standard to say in this situation that both E1 and E2 measure the
observable A, but both for Bohmian mechanics and for orthodox quantum
theory the very meaning of the association with the operator A is merely
that the distribution of the result of the experiment is given by the spectral
measures for A. Thus there is no mystery in the fact that E1 and E2 have
results governed by the same distribution, since, when all is said and done,
it is on this basis, and this basis alone, that we are comparing them.

(One might wonder how it could be possible that there are two differ-
ent experiments that are related in this way. This is a somewhat technical

1044 Dürr et al.



question, rather different from Mermin’s, and it is one that Bohmian
mechanics and quantum mechanics readily answer, as we have explained in
this paper. In this regard it would probably be good to reflect further on
the simplest example of such experiments, the Stern–Gerlach experiments
E‘ and Ea discussed in the previous subsection.)

It is also difficult to see how Mermin’s proposed resolution of the
mystery, ‘‘that both experiments reveal a set of values for A ... that is the
same, regardless of which experiment we choose to extract them from,’’
could do much good. He is faced with a certain pattern of results in two
experiments that would be explained if the experiments did in fact genui-
nely measure the same thing. The experiments, however, as far as any
detailed quantum mechanical analysis of them is concerned, don’t appear
to be genuine measurements of anything at all. He then suggests that the
mystery would be resolved if, indeed, the experiments did measure the same
thing, the analysis to the contrary notwithstanding. But this proposal
merely replaces the original mystery with a bigger one, namely, of how the
experiments could in fact be understood as measuring the same thing, or
anything at all for that matter. It is like explaining the mystery of a talking
cat by saying that the cat is in fact a human being, appearances to the con-
trary notwithstanding.

A final complaint about contextuality: the terminology is misleading.
It fails to convey with sufficient force the rather definitive character of
what it entails: ‘‘Properties’’ that are merely contextual are not properties
at all; they do not exist, and their failure to do so is in the strongest sense
possible!

8.5. Nonlocality, Contextuality, and Hidden Variables

There is, however, a situation where contextuality is physically rele-
vant. Consider the EPRB experiment, outlined at the end of Section 3.6. In
this case the dependence of the result of a measurement of the spin com-
ponent s1 ·a of a particle upon which spin component of a distant particle
is measured together with it—the difference between Zs1 ·a, s2 ·b

and Zs1 ·a, s2 · c

(using the notation described in the seventh paragraph of Section 8.3)—is
an expression of nonlocality, of, in Einstein words, a ‘‘spooky action at
distance.’’ More generally, whenever the relevant context is distant, con-
textuality implies nonlocality.

Nonlocality is an essential feature of Bohmian mechanics: the velocity,
as expressed in the guiding equation (2.2), of any one of the particles of a
many-particle system will typically depend upon the positions of the other,
possibly distant, particles whenever the wave function of the system is
entangled, i.e., not a product of single-particle wave functions. In particular,
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this is true for the EPRB experiment under examination. Consider the
extension of the single particle Hamiltonian (2.12) to the two-particle case,
namely

H=−
(
2

2m1
N2
1−
(
2

2m2
N2
2−m1s1 ·B(x1)−m2s2 ·B(x2).

Then for initial singlet state, and spin measurements as described in Sec-
tions 2.5 and 5.2, it easily follows from the laws of motion of Bohmian
mechanics that

Zs1 ·a, s2 ·b
] Zs1 ·a, s2 · c

.

This was observed long ago by Bell. (6) In fact, Bell’s examination of
Bohmian mechanics led him to his celebrated nonlocality analysis. In the
course of his investigation of Bohmian mechanics he observed that (ref. 10,
p. 11)

in this theory an explicit causal mechanism exists whereby the disposition of one
piece of apparatus affects the results obtained with a distant piece.

Bohm of course was well aware of these features of his scheme, and has given
them much attention. However, it must be stressed that, to the present writer’s
knowledge, there is no proof that any hidden variable account of quantum
mechanics must have this extraordinary character. It would therefore be interest-
ing, perhaps, to pursue some further ‘‘impossibility proofs,’’ replacing the arbi-
trary axioms objected to above by some condition of locality, or of separability of
distant systems.

In a footnote, Bell added that ‘‘Since the completion of this paper such a
proof has been found.’’ This proof was published in his 1964 paper, (5) ‘‘On
the Einstein–Podolsky–Rosen Paradox,’’ in which he derives Bell’s inequal-
ity, the basis of his conclusion of quantum nonlocality.

We find it worthwhile to reproduce here the analysis of Bell, deriving a
simple inequality equivalent to Bell’s, in order to highlight the conceptual
significance of Bell’s analysis and, at the same time, its mathematical
triviality. The analysis involves two parts. The first part, the Einstein–
Podolsky–Rosen argument applied to the EPRB experiment, amounts to
the observation that for the singlet state the assumption of locality implies
the existence of noncontextual hidden variables. More precisely, it implies,
for the singlet state, the existence of random variables Z i

a=Za ·s i
, i=1, 2,

corresponding to all possible spin components of the two particles, that
obey the agreement condition described in Section 8.2. In particular,
focusing on components in only 3 directions a, b, and c for each particle,
locality implies the existence of 6 random variables

Z i
a i=1, 2 a=a, b, c
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such that

Z i
a=±1 (8.5)

Z1
a=−Z2

a (8.6)

and, more generally,

Prob(Z1
a ] Z

2
a)=qab, (8.7)

the corresponding quantum mechanical probabilities. This conclusion
amounts to the idea that measurements of the spin components reveal
preexisting values (the Z i

a ), which, assuming locality, is implied by the
perfect quantum mechanical anticorrelations: (5)

Now we make the hypothesis, and it seems one at least worth considering, that if
the two measurements are made at places remote from one another the orientation
of one magnet does not influence the result obtained with the other. Since we can
predict in advance the result of measuring any chosen component of s2, by pre-
viously measuring the same component of s1, it follows that the result of any such
measurement must actually be predetermined.

People very often fail to appreciate that the existence of such variables,
given locality, is not an assumption but a consequence of Bell’s analysis.
Bell repeatedly stressed this point (by determinism Bell here means the
existence of hidden variables):

It is important to note that to the limited degree to which determinism plays a
role in the EPR argument, it is not assumed but inferred. What is held sacred is the
principle of ‘local causality’ – or ‘no action at a distance’. ...

It is remarkably difficult to get this point across, that determinism is not a
presupposition of the analysis (ref. 10, p. 143).

Despite my insistence that the determinism was inferred rather than assumed,
you might still suspect somehow that it is a preoccupation with determinism that
creates the problem. Note well then that the following argument makes no
mention whatever of determinism. ... Finally you might suspect that the very
notion of particle, and particle orbit ... has somehow led us astray. ... So the
following argument will not mention particles, nor indeed fields, nor any other
particular picture of what goes on at the microscopic level. Nor will it involve any
use of the words ‘quantum mechanical system’, which can have an unfortunate
effect on the discussion. The difficulty is not created by any such picture or any
such terminology. It is created by the predictions about the correlations in the
visible outputs of certain conceivable experimental set-ups (ref. 10, p. 150).

The second part of the analysis, which unfolds the ‘‘difficulty ...
created by the ... correlations,’’ involves only very elementary mathematics.
Clearly,

Prob({Z1
a=Z1

b} 2 {Z1
b=Z1

c} 2 {Z1
c=Z1

a})=1.
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since at least two of the three (2-valued) variables Z1
a must have the same

value. Hence, by elementary probability theory,

Prob(Z1
a=Z1

b)+Prob(Z1
b=Z1

c)+Prob(Z1
c=Z1

a) \ 1,

and using the perfect anticorrelations (8.6) we have that

Prob(Z1
a=−Z2

b)+Prob(Z1
b=−Z2

c)+Prob(Z1
c=−Z2

a) \ 1, (8.8)

which is equivalent to Bell’s inequality and in conflict with (8.7). For
example, when the angles between a, b, and c are 1200 the 3 relevant
quantum correlations qab are all 1/4.

To summarize the argument, let H be the hypothesis of the existence
of the noncontextual hidden variables we have described above. Then the
logic of the argument is:

Part 1: quantum mechanics+locality S H (8.9)

Part 2: quantum mechanics S not H (8.10)

Conclusion: quantum mechanics S not locality. (8.11)

To fully grasp the argument it is important to appreciate that the identity
of H—the existence of the noncontextual hidden variables—is of little sub-
stantive importance. What is important is not so much the identity of H as
the fact that H is incompatible with the predictions of quantum theory.
The identity of H is, however, of great historical significance: It is respon-
sible for the misconception that Bell proved that hidden variables are
impossible, a belief shared until recently by most physicists.

Such a misconception has not been the only reaction to Bell’s analysis.
Roughly speaking, we may group the different reactions into three main
categories, summarized by the following statements:

1. Hidden variables are impossible.

2. Hidden variables are possible, but they must be contextual.

3. Hidden variables are possible, but they must be nonlocal.

Statement 1 is plainly wrong. Statement 2 is correct but not terribly signi-
ficant. Statement 3 is correct, significant, but nonetheless rather misleading.
It follow from (8.9) and (8.10) that any account of quantum phenomena
must be nonlocal, not just any hidden variables account. Bell’s argument
shows that nonlocality is implied by the predictions of standard quantum
theory itself. Thus if nature is governed by these predictions, then nature is
nonlocal. ( That nature is so governed, even in the crucial EPR-correlation
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experiments, has by now been established by a great many experiments, the
most conclusive of which is perhaps that of Aspect. (4))

9. AGAINST NAIVE REALISM ABOUT OPERATORS

Traditional naive realism is the view that the world is pretty much the
way it seems, populated by objects which force themselves upon our atten-
tion as, and which in fact are, the locus of sensual qualities. A naive realist
regards these ‘‘secondary qualities,’’ for example color, as objective, as out
there in the world, much as perceived. A decisive difficulty with this view is
that once we understand, say, how our perception of what we call color
arises, in terms of the interaction of light with matter, and the processing of
the light by the eye, and so on, we realize that the presence out there of
color per se would play no role whatsoever in these processes, that is, in
our understanding what is relevant to our perception of ‘‘color.’’ At the
same time, we may also come to realize that there is, in the description of
an object provided by the scientific world-view, as represented say by clas-
sical physics, nothing which is genuinely ‘‘color-like.’’

A basic problem with quantum theory, more fundamental than the
measurement problem and all the rest, is a naive realism about operators,
a fallacy which we believe is far more serious than traditional naive realism:
With the latter we are deluded partly by language but in the main by our
senses, in a manner which can scarcely be avoided without a good deal of
scientific or philosophical sophistication; with the former we are seduced
by language alone, to accept a view which can scarcely be taken seriously
without a large measure of (what often passes for) sophistication.

Not many physicists—or for that matter philosophers—have focused
on the issue of naive realism about operators, but Schrödinger and Bell
have expressed similar or related concerns:

... the new theory [quantum theory] ... considers the [classical] model suitable
for guiding us as to just which measurements can in principle be made on the
relevant natural object. ... Would it not be pre-established harmony of a peculiar
sort if the classical-epoch researchers, those who, as we hear today, had no idea of
what measuring truly is, had unwittingly gone on to give us as legacy a guidance
scheme revealing just what is fundamentally measurable for instance about a
hydrogen atom!? (72)

Here are some words which, however legitimate and necessary in application, have
no place in a formulation with any pretension to physical precision: system; appa-
ratus; environment; microscopic, macroscopic; reversible, irreversible; observable;
information; measurement.

... The notions of ‘‘microscopic’’ and ‘‘macroscopic’’ defy precise definition.
... Einstein said that it is theory which decides what is ‘‘observable.’’ I think he
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was right. ... ‘‘observation’’ is a complicated and theory-laden business. Then that
notion should not appear in the formulation of fundamental theory. ...

On this list of bad words from good books, the worst of all is ‘‘measure-
ment.’’ It must have a section to itself. (11)

We agree almost entirely with Bell here. We insist, however, that
‘‘observable’’ is just as bad as ‘‘measurement,’’ maybe even a little worse.
Be that as it may, after listing Dirac’s measurement postulates Bell conti-
nues:

It would seem that the theory is exclusively concerned about ‘‘results of mea-
surement,’’ and has nothing to say about anything else. What exactly qualifies
some physical systems to play the role of ‘‘measurer’’? Was the wave function of
the world waiting to jump for thousands of millions of years until a single-celled
living creature appeared? Or did it have to wait a little longer, for some better
qualified system ... with a Ph.D.? If the theory is to apply to anything but highly
idealized laboratory operations, are we not obliged to admit that more or less
‘‘measurement-like’’ processes are going on more or less all the time, more or less
everywhere. Do we not have jumping then all the time?

The first charge against ‘‘measurement,’’ in the fundamental axioms of
quantum mechanics, is that it anchors the shifty split of the world into ‘‘system’’
and ‘‘apparatus.’’ A second charge is that the word comes loaded with meaning
from everyday life, meaning which is entirely inappropriate in the quantum
context. When it is said that something is ‘‘measured’’ it is difficult not to think of
the result as referring to some preexisting property of the object in question. This is
to disregard Bohr’s insistence that in quantum phenomena the apparatus as well
as the system is essentially involved. If it were not so, how could we understand,
for example, that ‘‘measurement’’ of a component of ‘‘angular momentum’’ ...in
an arbitrarily chosen direction ... yields one of a discrete set of values? When one
forgets the role of the apparatus, as the word ‘‘measurement’’ makes all too likely,
one despairs of ordinary logic ... hence ‘‘quantum logic.’’ When one remembers
the role of the apparatus, ordinary logic is just fine.

In other contexts, physicists have been able to take words from ordinary lan-
guage and use them as technical terms with no great harm done. Take for example
the ‘‘strangeness,’’ ‘‘charm,’’ and ‘‘beauty’’ of elementary particle physics. No one
is taken in by this ‘‘baby talk.’’ ... Would that it were so with ‘‘measurement.’’ But
in fact the word has had such a damaging effect on the discussion, that I think it
should now be banned altogether in quantum mechanics. (Ibid.)

While Bell focuses directly here on the misuse of the word ‘‘measure-
ment’’ rather than on that of ‘‘observable,’’ it is worth noting that the
abuse of ‘‘measurement’’ is in a sense inseparable from that of ‘‘observ-
able,’’ i.e., from naive realism about operators. After all, one would not be
very likely to speak of measurement unless one thought that something,
some ‘‘observable’’ that is, was somehow there to be measured.

Operationalism, so often used without a full appreciation of its con-
sequences, may lead many physicists to beliefs which are the opposite of
what one might expect. Namely, by believing somehow that a physical
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property is and must be defined by an operational definition, many physi-
cists come to regard properties such as spin and polarization, which can
easily be operationally defined, as intrinsic properties of the system itself,
the electron or photon, despite all the difficulties that this entails. If opera-
tional definitions were banished, and ‘‘real definitions’’ were required, there
would be far less reason to regard these ‘‘properties’’ as intrinsic, since they
are not defined in any sort of intrinsic way; in short, we have no idea what
they really mean, and there is no reason to think they mean anything
beyond the behavior exhibited by the system in interaction with an
apparatus.

There are two primary sources of confusion, mystery and incoherence
in the foundations of quantum mechanics: the insistence on the complete-
ness of the description provided by the wave function, despite the dramatic
difficulties entailed by this dogma, as illustrated most famously by the
measurement problem; and naive realism about operators. While the
second seems to point in the opposite direction from the first, the dogma of
completeness is in fact nourished by naive realism about operators. This is
because naive realism about operators tends to produce the belief that a
more complete description is impossible because such a description should
involve preexisting values of the quantum observables, values that are
revealed by measurement. And this is impossible. But without naive realism
about operators—without being misled by all the quantum talk of the
measurement of observables—most of what is shown to be impossible by
the impossibility theorems would never have been expected to begin with.
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